Programming for problem solving[CS1103ES]

UNIT-I

Unit-1: Introduction to Programming:

Introduction to components of a computer system: disks, primary and secondary memory,
processor,operating system, compilers, creating, compiling and executing a program etc.,
Number systems Introduction to Algorithms: steps to solve logical and numerical problems.
Representation of Algorithm, Flowchart/Pseudo code with examples, Program design and
structured programming Introduction to C Programming Language: variables (with data types
and space requirements), Syntax and Logical Errors in compilation, object and executable
code , Operators, expressions and precedence, Expression evaluation, Storage classes (auto,
extern, static and register), type conversion, The main method and command line arguments

Bitwise operations: Bitwise AND, OR, Kbﬁ and NOT operators
Conditional Branching and Loops: ertl@?nd ex.@aluau()o{e t conditionals and consequent
branching with if, if-else, switc e, ternary opfer tor Jtc)) Ite n with for, while, do-

whileloops
mat
S: ‘

nd prl}vtf‘lfor

can be touch and feel.
tructions) that perform specific task and

I/0: Simple input and output with
W

-

“ .
B
“HIntro
Computer Systems: ‘

e Computer is a machine ma
which known 0’s and 1°s or on
it (CPU), and store it in a comput

e A computer is a system made of two

e Hardware and software.

e Hardware is the physical equipment

e Software is the collection of programs
allow the ha

Computer Hardw

'

ces (switch, capacitor, transistor
e user to enter data (Input), process

omponents:

The hardwa
Input devic
Central pro ng
Primary stor
Output devi
Auxiliary storage devices.

CSE,NRCM P.REVATHY,ASSISTANT PROFESSOR Page 1

Programming for problem solving[CS1103ES]

‘
%
|

input Devices

Auxiliary Storage Devices Output Devices

Basic Hardware Components

Input device:
Data or instruction are_entered
Ex: keyboard, Mouse, Sca

Central processing unit (C;b

CPU is a comput%use rform-calcul and other‘operation.
Output device : é
The result given by the compu ft ceSSINg data is called as output. theoutput
device shows or play*(ult after the in s been proceed'
e

% the mpu&xith the Felp of input devices.

er

Ex: Monitor, Printer, utput S.

Computer Memory:
Computer memory is any physical devic bl oring information temporarily or
permanently.

Primary Memory

e Primary memory is computer memory
Primary me
It may be r
primarily as
Primary me

computer accesses directly.

Fig3: Ram

CSE,NRCM P.REVATHY,ASSISTANT PROFESSOR Page 2

Programming for problem solving[CS1103ES]

Secondary Storage and Disk

e Secondary storage devices are those devices whose memory is non volatile,meaning,
the stored data will be in computer even if the system is turned off.

Here are a few secondary storage. Hard Disk, CD RAM,DVD RAM, Pen Drive
Secondary storage is also called auxiliary storage.

Secondary storage is less expensive when compared to primary memory likeRAMSs.
The speed of the secondary storage is also lesser than that of primary storage.

Extended Memory Hierarchy

Source: http://www .ts.avnet.com/uk/products and solutions/storage’hierarchy.html

Processor:
e A processo il. calculationsthat
run a comp
e A processo rfor ti ut (17 nd other basic

instructions that are passed from an operating system (OS).

CSE,NRCM P.REVATHY,ASSISTANT PROFESSOR Page 3

Programming for problem solving[CS1103ES]

Computer Software

e Computer software is divided in to two broad categories: system software and application
software.

System software:

e System software manages the computer resources .It provides the interface between
the hardware and the users.

e System software consists of programs that manage the hardware resources of a computer
and perform required informationt processing tasks.

e These programs are divided intc’\ﬂree classes: the dheratmg system, system support, and
system development.

e The operating system des serwces uch as au
access, and interfaces t municati n stems suc

e System support mgre pr s anduother operating services.

system
Examples of system.Hejles a‘t pr ";Ilsk rmat programs.
e The language ors convert ‘ Into machin uage for execution

terface, file and database
nternet protocols.

{)
debugging tools ure that the pr ycomputer —assisted
software engineerin AS

Application software
e Application software, on the other tly responsible for helping users solve

their problems.
e Application software is classified into

e General-pu can be used for

more than one application and a

Computer Languag

e To write a program for a computer, we must use a computer language. Over the years
computer languages have evolved from machine languages to natural languages.

1940’s Machine level Languages
1950’s Symbolic Languages

1960’s High-Level Languages

CSE,NRCM P.REVATHY,ASSISTANT PROFESSOR Page 4

Programming for problem solving[CS1103ES]

Machine Languages

e In the earliest days of computers, the only programming languages available were
machine languages. Each computer has its own machine language, which is made
of streams of 0’s and 1’s.

e Instructions in machine language must be in streams of 0’s and 1’s because the
internal circuits of a computer are made of switches transistors and other electronic
devices that can be in one of two states: off or on. The off state is represented by O ,
the on state is represented by 1.

The only language understood by computer hardware is machine language.

Symbolic Languages: - M
'} o‘ :
e Inearly 1950’s Admiral Grace | oi:per math atician and naval officer developed
the concept of a speci mputer rogﬁm that'would ert programs into machine
language.

e The early programming la

|mply rnlfrror to chine languages using symbols

of mnemonics to represent the us machine | ge insteuctions because they used
symbols, these Iangqéae‘ we wn as sy Ian j9§

uage it rrw translated to the

olic code into machine language.
d into machine language they soon

e Computer do understan
machine langua

e A special program called ass
Because symbolic languages ha
became known as assembly langu

e Symbolic language uses symbols or
language instructions.

onics to represent the various, machine

High Level Langua

e High level
programme
intricacies 0

e High-level |
assembly la

e High level
converted into machine language.

e The process of converting them is known as compilation.

ers, allowing the
rather than the

the details ofthe

symbolic languages; they must be

The first widely used high-level languages, FORTRAN (FORmula TRANslation) was created
by John Backus and an IBM team in 1957;it is still widely used today in scientific and
engineering applications. After FORTRAN was COBOL (Common Business-Oriented
Language). Admiral Hopper was played a key role in the development of the COBOL Business
language. C is a high-level language used for system software and new application code.

CSE,NRCM P.REVATHY,ASSISTANT PROFESSOR Page 5

Programming for problem solving[CS1103ES]

Creating and Running Programs:

Computer hardware understands a program only if it is coded in its machine language. It is
the job of the programmer to write and test the program .There are four steps in this process:

1. Writing and Editing the program

2. Compiling the program

3. Linking the program with the required library modules
4. Executing the program.

&l I+
Text Editor ¢ e el

Compiler

®
n\ #include «<stdio. he
Programmer int
Source

-

>E——> e
bR AR S ':" iits

Building a C Program

Writing and Editing Programs

The software
A text edito
The main d
are written
lines.

After writing a program, we save our file to disk. This file will be input to the
compiler; it is known as a source file.

is that programs
ithcharacter and

Compiling Programs:

e The code in a source file stored on the disk must be translated into machine
language; this is the job of the compiler.

e The ‘¢’ compiler is two separate programs. The preprocessor and the translator.

e The code generated after compilation is called object code.

CSE,NRCM P.REVATHY,ASSISTANT PROFESSOR Page 6

Programming for problem solving[CS1103ES]

The preprocessor reads the source code and prepares it for the translator. While preparing the
code, it scans for special instructions known as preprocessorcommands.

After the preprocessor has prepared the code for compilation, the translator convert the
program into machine language and generate the object code that is,not executable because it
does not have the required C and other functions included.

Linking Programs:

e A C program is made up of many functions.

e Function can be user defined or predefined

e Predefined function, such as input/output function and mathematical library
functions that exist elsewhere must be attached to our program.

e The linker assembles all of th%functlons cﬁo object code and thengenerate

final executable progr

Executing Programs:

e Once program ha linke s ready for t|on
e To execute a progra use erat such as run,
e OS use the program called loa from secondary memory into

primary memor ecute the progra

In a typical program execution, it rea i ither from the user or from a file.
put. At output can be to the user’s
monitor or to a file. When the program has ob, it tells the operating system, which

then removes the program from memory.

Interpreter Vs Com

Interpreter Compiler
Translates program one statement at a Scans the entire program and translatesit as
time. a whole into machine code.

CSE,NRCM P.REVATHY,ASSISTANT PROFESSOR Page 7

Programming for problem solving[CS1103ES]

It takes less amount of time to analyzethe It takes large amount of time to analyzethe
source code but the overall execution source code but the overall execution time
time is slower. IS comparatively faster.

Generates intermediate object code which
further requires linking, hencerequires
more memory.

No intermediate object code is generated,
hence are memory efficient.

Continues translating the program until It generates the error message only after
the first error is met, in which case it scanning the whole program. Hence
stops. Hence debugging is easy. debugging is comparatively hard.

Ruby use interpreters.

Programming language like Python, Programming language like C, C++ use
A comp|lers

Errorsin C

e Erroris an illegal operati
the program.

e Programming erro

e Some of the errors restrict the
errors should b ved before

Types of Error

1. Syntaxerrors:
e Errors that occur when you vio
syntax errors.
e This compiler error indicates somet
compiled.
e All these errors are detected by compi
errors.

e Most freque

Missing Parenthesis

Printing the value of i
this:

rmed user whiclg#esults in abnormalworkmg of

etected un complled orexecuted.
g co ed or executed. Thus
nd“€Xxecuting. '
e rules

ting C syntax are known as

ust be fixed before the code canbe

d thus are known as compile-time

2. Run-time Erro

e Errors whi er successful
compilation -

e One of the most common run-time error is division by zero also known asDivision
error.

e These types of error are hard to find as the compiler doesn’t point to the line at
which the error occurs.

CSE,NRCM P.REVATHY,ASSISTANT PROFESSOR Page 8

Programming for problem solving[CS1103ES]

3.Logical Errors :
e On compilation and execution of a program, desired output is not obtainedwhen
certain input values are given.
e These types of errors which provide incorrect output but appears to be error freeare
called logical errors.
e These are one of the most common errors done by beginners of programming.

Number System:

When we type some letters or words, the computer translates them in numbers as computers can
understand only numbers. A computer can understand the positional number system where there
are only a few symbols called digits and these symbols re esent different values depending on

the position they occupy in the numbe
S?

The value of each digit in agumber sé}. be d%ermip!a u
efin the total numberof

"

to- fe is the decimal number

1 The digit

1 The position of th it in the

ber
0 The base of the nu bgv\
digits available in the number S

Decimal Number Systerr‘

1 The number system that we

system.

7 Decimal number system has base 10 s 10 digits from O to 9.

7 In decimal number system, the succe positions to the left of the decimal point

represent unj

osition, 3 in the

Example: the deci umbe I i i the ugi

tens position, 2 in re e p Its value can be

written as
. (1 x 1000)+ (2 x 100)+ (3 x 10)+ (4 x 1)
. (1 x 103)+ (2 x 102)+ (3 x 10Y)+ (4 x 109)
. 1000 + 200 + 30 + 4
. 1234

Other Number System:
1. Binary Number System: Base 2. Digits used : 0, 1

2. Octal Number System: Base 8. Digits used : 0 to 7

———
CSE,NRCM P.REVATHY,ASSISTANT PROFESSOR Page 9

Programming for problem solving[CS1103ES]

3. Hexa Decimal Number System:Base 16. Digits used: O to 9, Lettersused : A- F

Representation of Alaorithm .Flowch p with Examples:

Algorithm:

Algorithm is a finite set of instructions that , if followed accomplishes a particular task. The same
problem can be solved with different methods. So, to solve a problem different algorithms, may be
accomplished. Algorithm may vary in time, spaceutilized.

User writes algorithm in his / her own language. So,it cannotbe executed on computer. Algorithm
should be in sufficient detail that it can be easily translated into anylanguage.

Characteristics or properties of Algorithms Py
1.Input :Zero or more quantities ar rnallygupplieq'..“l
2.0utput: At least one quantity isprc'xiz?ed. : (’
3.Definiteness: Each instr is clear and th’%rbigu us. Ex:
4. Finiteness: Algorithm sh erminate after finite number
5. Effectiveness: Every Instr st bebasic.

or C toA.

o')
2
N 4
Advantages of Algorithms: “. C\/

= |t provides t re solution to“a*giv blem™ the solution eimplemented on a
computer syst g any programmi
= |t facilitates progr ocument or a blue print of a given

problemsolution.

It eases identification and removal o
= |t facilitates algorithm analysis to find

n a program.
st efficient solution to a given problem.

Disadvantages of Algorithms:

e Inlar :
e Algorithms lack visual representation of programming constructs like flowcharts.
e Under g the tiv,

Examples:

Examplel :Add t

Step 3: Add numbers A and B andstoreresult in C
Step 4 :DisplayC
Step 5: Stop

Example2: Average of 3 numbers.
Step 1.Start
Step 2.Read the numbersa, b, c
Step 3.Compute the sum and divide by 3
Step 4.Store the result in variabled
Step 5.Print value of d

CSE,NRCM P.REVATHY,ASSISTANT PROFESSOR Page 10

CSE,NRCM

Example3: Average of n inputtednumbers.

Flowchart:

A flowchart is a Visual rep ation of “the s
Aflowchartisasetofsymbolsthati i ati

is a corresponding symbol in the

done using a flowchart. ch i
*The first flowchart is made n Vo
eItisasymbolicdiagra wandprocessin ic in
informationprocessing.

*The symbols used are simple and easy
«It is a very helpful tool for programmers an

Purpose of a Flowchart :

Limitations of a Flowchart :

Programming for problem solving[CS1103ES]

Step 6.End

Step 1.Start

Step 2.Read the number n

Step 3.Initialize i to Zero

Step 4.Initialize sum to zero

Step 5.If i is greater than n

Step 6.Read a

Step 7.Add a to sum and goto step 5.

Step 9.Dividesum by n and store the result in avg
Step 10.Print value ofAvg

Step 11.End

)

ce of steps fi
Sintheprogram
epresentatio

ving a problem.
ery process, there
textual algorithm is

*Providescommunication.
*Provides anoverview.
*Shows all elements and their relationships.

*Independent of any particular programminglanguage.
*Proper documentation.

*Proper debugging.

*Easy and clear presentation.

*Complex logic.

*Drawing is time consuming.
+Difficult to draw and remember.
*Technical detail.

P.REVATHY,ASSISTANT PROFESSOR Page 11

Programming for problem solving[CS1103ES]

Symbols : Symbols are divided in to the following twoparts.
I. AuxiliarySymbols.
Il. PrimarySymbols.

Q Start/Stop

| l Process

ﬁ @ Flow Lines

Imput/Output

Prepare an algorithm and ro&tf swappi 0 numbers

To Swap two integer nu
Algorithm : ‘

Using third variable ‘

CSE,NRCM P.REVATHY,ASSISTANT PROFESSOR Page 12

&
&

Step1: Start

Step 2 : Input numl, num2
Step 3: Temp = numl

Step 4 . numl= num2

Step 5: num2 = Temp

Step 6 : Output numl, num2
Step 7 : Stop

Flowcharts

Develop an algorithm and flox‘to find the |
Ans:Algorithm: ‘

Programming for problem solving[CS1103ES]

temp = numl

i

numl=numl+ num2

numl =num2 num2 = numl - num2
num2 = temo numl=numl- num2
num2

Fiz a: Withusing third variable Fig b: Without using third variable

@
&
&

Step 1: Start ‘

Ste[‘mutA B
Step 3: A > en out

else outp
Step 4. Stop

HGa

Flowchart
—_— Input A B —_——
YES H NO
F
I:'OUTPUT':I_ P} | OUTPUT-B
CSE,NRCM P.REVATHY,ASSISTANT PROFESSOR Page 13

Programming for problem solving[CS1103ES]

Develop an algorithm and flowchart to find the largest among three numbers. Algorithm:

Step 1 : Start

Step 2 :Input A, B, C

Step 3 :If A > B goto step 4 ,otherwise goto step 5.
Step 4 :if A > C goto step 6,0therwise goto step 8

Step 5 :if B > C go to step 7,otherwise goto step 8

Step 6 : print A is largest and goto step9

Step 7 : print B is largest and goto step9

Step 8 : print C is largest and goto step9

Step 9 :Stop
Flowchart:
)
. A -
Outout B Output A
L
9
|
p
STCP
Simulate an algorithm and flowchart to fin orial of a number
Flowchart:

i=1
factors=1

g'f

izi+l

CSE,NRCM P.REVATHY,ASSISTANT PROFESSOR Page 14

Programming for problem solving[CS1103ES]

Algorithm:

Step 1:Start

Step 2:Input n

Step 3:Initialize counter variable, i, to 1 and factors = 1 Step
4:if i<= n go to step 5 otherwise goto step 7

Step 5:Calculate factors = factors * i

Step 6:Increment counter variable, i, and goto step 4
Step 7:output factors.

Step 8:stop

Pseudocode:

Pseudocode is an informal way of progr does not require any strict

ng deseription
programming language syntax derlying techn considerations. used for creating
an outline or a rough draft o;‘gram. Pseud; summarizeslgram’s flow, but
excludes underlying details. System desighers writ udoco ensure that programmers
j gly. é

&

part of the code

align code a

‘algo
IF (A > B)

THEN Print A “is biggexr™;
ELSE Print B Wie bigger”;
ENDIF;

Example Sum ofmbers fm- ‘

Program : Printsum1to 5
Sum=0;
A=1;

understand a software proj irem

Advantages of pseudocode -

* Pseudocode is under&‘he progcammers of

* it enables the programmer to conce

development.
* |t cannot be compiled into an executableprogr
Example of Pseudocode:

Bigger of 2 numbers:

Read A,B.

———
CSE,NRCM P.REVATHY,ASSISTANT PROFESSOR Page 15

Programming for problem solving[CS1103ES]

While(A!=6)

Do sum=sum+A; Endwhile.
Print sum;

End

Creating compiling and executing a program:

Creating and running programs:

It is the job of programmer to write and test the program. The following are four steps for creating
and running programs:

A. Writing and Editing theProgram.

B. Compiling theProgram.

C. Linking the Program with the requi

riea’}?rarym dules. A‘f
- A ‘
l

A. Writing and Editing Progra he Software t0 write progr own as text editor. A text
editor helps us enter, ¢ e and store on the edijqr)on our system, it

acter . Depe
could be used to write let tere writeprograms
p prog ‘,‘v
Example : word processor. text co e ized W processor, but every
compiler comes with iated text editor.
Some of the featureﬁs are ch : '

To locate and replacestatements.

D. Executing theProgram.

S

Copy , Paste : To copy and move statem

Format : To set tabs to align text.

After the program is completed the program is s
compiler, it is known as source file. The followin

a file to disk. This file will be input to the
e shows the various steps in building a C -

program.
B.Compiling Pra ‘ S i 3 nto machine
language. This is Al: : nto machine

language. The C ¢
preprocessor read source CO8
known as preprocessor commands. These commands tell the preprocessor to take for special code
libraries, make substitutions in the
code.Theresultofpreprocessingiscalledtranslationunit. Thetranslatorreadsthetranslation

unitandwritesresultingobjectmoduletoafilethatcanbecombinedwithotherprecompiled units to form
the final program. An object module is the code in machine language. This

moduleisnotreadyforexecutionbecauseitdoesnothavetherequiredCandotherfunctions included.

CSE,NRCM P.REVATHY,ASSISTANT PROFESSOR Page 16

Programming for problem solving[CS1103ES]

Fig: Steps followed to Build a C — program

n\ #include <stdio. h=>
Programmer . int main (void)
Text Editor {
)ul.."/ main Source
\—b @—>
Object

00110 1001 0101010
Linker ?911001101001001
Library 8//" 5i0|01 01110110100/ Executable
- ="
esults
LAY '
C.Linking Programs:.C programs are ma
Example: printf() , cos()™ Thei

program, we use operating system command, s

to load the program in to main memory
and execute it. Getting program into memory is nction of an Operating System programs

called loader. Loader locates the executable progr reads it into memory. In a typical program

execution, th from
userorfromfile. Aftg to user‘s
monitor or to a f : 2, y ogram from

memory.

Svntax And Loaical Erro

In computer programming, a logic error is a bugin a program that causes it to operate incorrectly, but
not to terminate abnormally (or crash). A logic error produces unintended or undesired output or other

behavior, although it may not immediately be recognized as such.

Logic errors occur in both compiledand interpretedlanguages. Unlike a program with a syntax error, a

program with a logic error is a valid program in the language, though it does notbehaveasintended.

Oftentheonlycluetotheexistenceoflogicerrors istheproductionof wrong solutions, though static analysismay
e ——

CSE,NRCM P.REVATHY,ASSISTANT PROFESSOR Page 17

https://en.wikipedia.org/wiki/Computer_programming
https://en.wikipedia.org/wiki/Software_bug
https://en.wikipedia.org/wiki/Crash_(computing)
https://en.wikipedia.org/wiki/Compiler
https://en.wikipedia.org/wiki/Interpreter_(computing)
https://en.wikipedia.org/wiki/Syntax_error
https://en.wikipedia.org/wiki/Static_program_analysis

Programming for problem solving[CS1103ES]

sometimes spot them

Object and Executable Codes:

Object Code :

Object code is produced when an interpreter or a compiler translates source code into recognizable and
executable machine code. Object code is a set of instruction codes that is understood by a computer at the

lowest hardware level. Object code is usually produced by a compiler that reads some higher level computer

language source instructions and translates them into equivalent machine language instructions.

Executable Code :

ItisSoftwareinaformthatcanberuninthecomputer. It

I
Whichisthesetofnativeinstructionsthecomputercarr’i%'/nhard re.Ex blefilesin
theDOS/Windowsworlduse.exeand.com tensions,while tablefilesinUni Mac do not require

lyreferstomachinelanguage,

specific extensions. They are identified b filestructure

Structure of C Program: % ‘ ‘

DocurmentsStion Section

")

Link Section
Definition Section

Slobs=sl Dedlsrstion Section

MMaoinf{dl)Function Section Deddarstion Pt

£ Execut=sble Pt

3

Sub FPFrosr=mrm Section

Funcrion1

FunctionZ>=

Funciocomn n

(U ==r defined Funcrion=)

Documentation section :

This section consists of a set of comment lines giving the name of the program, and other details. which the programmer
would like to user later.

Ex:- /*Addition of two numbers */

Link section:Link section provides instructions to the compiler to link functions from thesystem library.

———
CSE,NRCM P.REVATHY,ASSISTANT PROFESSOR Page 18

Programming for problem solving[CS1103ES]

Ex:- #include<stdio.h>
include<conio.h>

Definition section:Definition section defines all symbolic constants.

Ex:- # define A 10.

Global declaration section:Some of the variables that are used in more than one functionthroughout the program are
called global variables and declared outside of all the functions. This section declares all the user-defined functions.

Main() function section:

Every C program must have one main () f ion section. This ins two parts.

e variables used i‘exe le p?
t least o tement . These arts mu arbetween the opening and

ins at ening brace satt ng brace. All the statements in
thas

i) Declaration part:This part declares al

Ex:-inta,b;

ii) Executable part:This part con
closing braces. The program execu
the declaration and executable parts

Sub program section:This se tains all the user-d unctions, that are ca hemain () function. User-
defined functions are generally i i i Ithou ay appear in any order.

Ex:

My first Program

This void means "main”

Fatuw ns no value.

#include<stdio.h>
main function Libl'al"\" ,"Hl'fﬂdﬁ‘f fil!_;'," Pl'OtOt)'P';‘
void main(void)
I"

{

his void means "main” passes no

Body of the main
function.

printt function is used to display the infonnd

wiitten inside its braces,

printf(“How are you!”);

CSE,NRCM P.REVATHY,ASSISTANT PROFESSOR Page 19

Programming for problem solving[CS1103ES]

VARIABLES

Itis a data name that may be used to store a data value. It cannot be changed during the
execution of a program. A variable may take different values at different times during

execution. A variable name can be chosen by the programmer in a meaningful way so as to

reflect its function or nature in the program.
Rules: @ ’

Variable names may consist of le
ilers ca 5’)

igits and un

re(_) chara

’

First char must be an alphabet or an™
Length of the variable ca ed upt

Uppercase and lower c*gmflcant.
Ex:- mark,sum1,tot_value,del d)

PricsS, group one, char (invalid)

racters, some
recognized upto 31 charact
White space is not allowed.
Variables name should.not be a keyword.

Declaration and initialization of variables with exampl
Declaration does two things:

1. It tells the compiler what the variable name is.
2. It specifies what type of data the variable will hold.

The declaration of variable e don

The syntax for declaring a .
data-type v1,v2,....... vn;

vl,v2,..,vn are the names of variables. Variables are separated by commas. A declaration statement must end with a
semicolon. For example , valid declarations are:

int count;
int number, total;
double ratio;

The simplest declaration of a variable is shown in the following code fragment:
I ———-;—-—§=

CSE,NRCM P.REVATHY,ASSISTANT PROFESSOR Page 20

Programming for problem solving[CS1103ES]

Example:

int main()

{

//Declarations
float x,y;

int code;

short int count;
long int amount;
double deviation;
unsigned n;

charc;

Initialization of variable :

Initialize a variable in c is to assign it a starting value. Witho we can't get
whatever happened to memory at that moment.
C does not initialize variabl atica

you can get unexpected re
when you declare them.
For Example :

int x=45;
intmonth_lengths[] ={23,34,43,56,32,12,24};

struct role = { "Hamlet", 7, FALSE, "Prince of Denmark ", "Kenneth Branagh"};

*Note : The initialization of variable is a good process in programming.

———
CSE,NRCM P.REVATHY,ASSISTANT PROFESSOR Page 21

Programming for problem solving[CS1103ES]

Data types :

A data type is a classification of the type of data that a variable can hold in computer programming.
Data type is the type of the data that are going to access within the program. C supports different data
types. Each data type may have pre-defined memory requirement and storage representation.

C supports 4 classes of data types.

Primary or (fundamental) data type(int, char, float,double)

User-defined data type(typedef,structures,unions)

Derived data type(arrays, pointers,)

Empty data type(void). ‘.I' M
. 4

DATA TYPES

b=

FUNDAMENTALOR DERIVED DATA TYPES USER DEFINED
PRIMITIVE DATA TYPES DATA TYPES

INT DOUBLE CHAR
FLOAT VOID

ARRAYS POINTERS STRUCTURES UNIONS

FUNCTIONS TYPEDEF ENUM

1. Primary or (fundamental) datatype

All C compilers support 4 fundamentals data types

i)
ii) Character(char)
iii) 3
iv)
i)Integer types:

Integers are whole numbe s occupy one word of
storage and since the word S 3 eger value is -32768 to
+32767. In order to control over the range of numbers and storage space, C has 3 classes of integer storage, namely short,
long, and unsigned.

FORMAT
DATA TYPE RANGE SIZE
SPECIFIER

———
CSE,NRCM P.REVATHY,ASSISTANT PROFESSOR Page 22

Programming for problem solving[CS1103ES]

2% t02% -1 4 bytes (on 32 bit
Int -32768 to +32767 processors) %d or %i
Signed short intor 4 bytes
-128 to +127 %d or%i
Short int
4 bytes
Unsigned short int 0 to 255 %d or %i
0 to 65,535 4 bytes
Unsigned int %u
Unsigned long int %lu
Long int or
%lu
signed long int

Character type:-

Single character can be defined as a charact haracters are usually stored in 8bits

of internal storage. Two classes of char types

signed char, unsigned char.
signed char(or) char 1 byte- -128 to +127%c
unsigned char 1 b

ii) Floating point

Floating point (r
accuracy provide

float 4 bytes3.4e-
iv). Double preci ype:

doubledatatypenumberuses64bitsgivingaprecisionofl4digits. Theseareknownasdouble precision
numbers. Double type represents the same data type that float represents, but with a greater precision.
To extend the precision further, we may use long double which uses 80bits.

Double8 bytes 1.7e-308 to 1.7e+308%If

long doublel0 bytes 3.4e-4932 to 1.1e+4932%If

———
CSE,NRCM P.REVATHY,ASSISTANT PROFESSOR Page 23

Programming for problem solving[CS1103ES]

2. User defined datatypes:

C—supportsafeatureknownas—typedefinitionlthatallowsusersdefineanidentifierthat would represents
an existingtype.

Syntax: typedef data-type identifier; where data-type indicates the existing datatype identifier
indicates the new name that is given to the data type.

Ex:-typedef int marks;

marks m1, m2, m3;

t)ﬁJedefca_nnotcreateanewdatatype,itcanrenametheexistingdatatype.Themaina_d_vantaﬁe
oftypedefisthatwecancreatemeaningfuldatatypenamesforincreasingthereadabilityofthe
program.Another user-defined datatype is —enumerated datatype(enum)

Syntax:enumidentifier {valuel,value2,....c.os............ valuen};

tod e variablgs that can have one of the
.valuen all t}ve known as enumeration

Where identifier is user-defin
values enclosed within the br

datatype his
valuel ,value

constants.

Ex:-enum identifier vl,.v2,...... vn)
vl=value3; % &
v2=valuel;...

sunday}; enum day week-

Week-f = Monday

enum day{Monday...Sunday} week-f,

CONSTANTS IN C

Constants is the m
Constants in C are the fixe
same during the entire exe

e Constants are also d literals.
e Constants can be any of the data types.
e Itis considered best practice to define constants using only upper-case names.

Types of C constants:
1.Integerconstants
2.Real constants

CSE,NRCM P.REVATHY,ASSISTANT PROFESSOR Page 24

Programming for problem solving[CS1103ES]

3.Character constants

4. String constants
1. Integer constants: An integer constant refers to a sequence of digits. There are three

Examples of Integer Constants:

426 ,+786 , -34(decimal integers)

types ofintegers, namely, decimal integer, octal integer and hexadecimal integer.

037, 0345, 0661 (octal integers)

0X2, 0X9F, 0X (hexadecimal integers) ‘ '

2. Real constants:These quantitie represent numbers containifigifractional)
parts like18.234. Such numbers a%al (o g poII con é

Examples of Real ‘

Constants: +325.34426.0

-32.67 etc.
The exponential form of representation of real constant ed if the value of the
constant is either too small or too large. In exponential for presentation the real
constant is
represented in two parts. The first part present before 'e' is called Mantissa and
the part following 'e'is call
For ex. .000342 can be wri
3.Single Character consta glec
enclosedwithin a pair of single quote marks.

Forex.'A','5',", _

Note that the character constant‘5‘ is not same as the number 5. The last constant is a

blank space.Character constant has integer values known as ASCII values. For example,

the statement

CSE,NRCM P.REVATHY,ASSISTANT PROFESSOR Page 25

Programming for problem solving[CS1103ES]

printf(“%d”,a); would print the number 97,the ASCII value of the letter a.

Similarly,thestatement printf(“%c”,97); would output the letter _a‘

Backslash Character Constants: C supports some special backslash character constants

that areused in output functions. Some of the back slash character constants are as follows:

CONSTANT MEANING
A0’ NULL

\t’ Horizontal tab

\b’ Backspace

\a’ Audible bell

\n’ New line

A\ Vertical tab

\? Question mark

\” Single Quote

\" Double Quote

A\V Backslash

These character combinations are called escape sequences

String constants: A string ¢ is a se
guotes. Thecharacters ma t a.
Examples are: “HELLO!”

111979”
“welcome”
”5+3”

IIAH

CSE,NRCM P.REVATHY,ASSISTANT PROFESSOR Page 26

Programming for problem solving[CS1103ES]

Rules for constructing integer constants:

a. An integer constant must have at least one digit.

b. It must not have a decimal point.

c. It can be either positive or negative.

d. The allowable range for constants is -32768 to 32767

In fact the range of integer constants depends upon

compiler. For ex. 435

Rules for constructing real constants: \

a. A real constant must have at le ne digit
b. It must have a decimal point.

c. It could be either positive or*.

d. Default sign is positive.

For ex.

+325.34

426.0

In exponential form of representation, the real constants is ented in two parts.
The part appearing before _e’is called mantissa where as the part following _e‘is
called exponent.

Range of real constants ex

3.4e38. Ex. +3.2e-5

Rules for constructing character constants:
a. A character constant is a single alphabet, a single digit or a single special symbol
enclosed within single inverted commas.

b. The maximum length of character constant can be one character.

CSE,NRCM P.REVATHY,ASSISTANT PROFESSOR Page 27

Programming for problem solving[CS1103ES]

Ex A’

Qperators :

An operator is a symbol that tells the computer to perform certain mathematical or logical
manipulations. Operators are used in programs to manipulate data and variables.

C operators can be classified into a number of categories, they are

1.ArithmeticOperators 2.RelationalOperators 3.LogicalOperators 4.Assignment
Operators
5.Increment anddecrement operators 6.Conditionaloperators 7.Bitwise Operators

8.Specialoperators

1. Arithmetic Operators:C provides aI he basic arithmetic operators. These can operate onany

built —in data type allowed inC.
as foIIO\@a “

h

The arithmetic operators are li

eaping amples
Operator -?
5,a=h+C;N=9+6;
- Subtractlon

tlpllca

/ Division (qu ‘

% Modulo division

NOTE:
1. Integer diyisi
2. The modulodivision operation produces the remalnder of an integerdivision.
3. Modulus i

Integer Arithme

If both the oper
arithmetic and the

Real Arithmetic:

If both the operands in an arithmetic expression are real operands then it is known as real
arithmetic and the result is real.

Mixed mode Arithmetic:

If the operands in an arithmetic expression are of different types then it is known as mixed mode
arithmetic and the result is a bigger type.

CSE,NRCM P.REVATHY,ASSISTANT PROFESSOR Page 28

Programming for problem solving[CS1103ES]

2. RelationalOperators:

Relational operators are used for comparing two quantities, and used for decision making.For example we may
compare the age of two persons or the price of two items which can be done with the help of relational
operators.An expression containing a relational operator is termed as a relational expression. Thevalue of a
relational expression is either one or zero. It is one if the specified relation is true and zero if the relation is false.
Ex:-13<34 (true) 23>35(false)

C supports 6 relational operators

Operator Meaning Example Result
< is less than a<6 @=7) 0
<= is less than or equal to 1
> is greater than t 1
>= is greater than o 1

== is equal t - }
1= is not equal t\ﬁ |

When arithmetic expression‘

evaluated first and then the results compare
operators.

3.LogicalOperator:

C has 3 logical operators. The logical operators
condition and make decisions. The operators are a

Operator

&&

The logical operators && and || are used when we test morethan one condition and make decisions.
Logical expressions combines two or more relational expressions, is also known as compound
relational expression. The truth table for Logical AND and Logical OR is as below

CSE,NRCM P.REVATHY,ASSISTANT PROFESSOR Page 29

Programming for problem solving[CS1103ES]
—————— |

OPL OP2 OP1&&0P2 | OP1]OP2

0 0 0 0

0 1 0 1

1 0 0 1

1 1 1 1
e ——
CSE,NRCM P.REVATHY,ASSISTANT PROFESSOR Page 30

Programming for problem solving[CS1103ES]

Assignmentoperator:

These operators are used to assign the result of an expression to a variable. The usual assignment operator is
“=*, In addition ,C has a set of shorthand assignment operators of theform:

V 0p = exp;

Where v is a variable, exp is an expression and op is a C binary arithmetic operator. The
operator op=is known as the shorthand assignment operator.

Operator Meaning Example

= Assignment a=5; X=Y;r=s*t;

mpliesb=b+5

impliesgse-55
b*=5 impl*s
al. pliesa=a/10 =

mplieﬁ
&

i. What appears on the left- hand side nee
towrite

ii. The statement is more concise and easier t

ili. The statement is moreefficient

repeated and therefore it becomes easier

3. Increment and

++and - - are inc
while - - subtracts

++a Pre increment ++sum
-- b-- Post decrement j-
--b Pre decrement --count

CSE,NRCM P.REVATHY,ASSISTANT PROFESSOR Page 31

Programming for problem solving[CS1103ES]

++m; or m++; is equal to m=m+1(m+=1;)

--m; or m- - is equal to m=m-1(m- = 1;)

We use the increment and decrement statements in for and while loops extensively

Consider the following example when m=5,then

y=++m; the value of y=6 and m =6. Suppose if we write the above statement as m=5;

y= m++; the value of y=5 and m=6.

A prefix operator first adds 1 to the operand and then the result is assigned to the variable on
left.Ontheotherhand,apostfixoperatorfirstassignsthevaluetothevariableonleftandthen increments the

operand. Likewise for decrementoperator

4. Conditionaloperator: ,3
A ternary operator pair “? :” is‘)le in C'to corﬁ%t conditional 1ions of the form
expl ?exp2 : exp3 where expl,e ndexp3 are ssions.

o')

The operator?: works?% ted f it wero (true), then
theexpression exp 2 is evaluatedand bec of t ression. If expl is false, exp3 is

evaluated and it beco value of the e SSI

Ex:- a=10; b=45;
Big= (a>b) ?a:b;
o/p:- Big will be assigned the value of b (45) s

5. BitwiseOperators:

C supports a special operator knows as bitwis

tors for manipulation of data at bit
level. These opera i i

Note: Bitwise op

n Bitwise exclusive OR XNy
<< Shift left X<<y
>> Shift right X>>y
~ Bitwise ones complement -y

CSE,NRCM P.REVATHY,ASSISTANT PROFESSOR Page 32

Programming for problem solving[CS1103ES]

6. Specialoperators:

C supports some special operators such as comma operator, size of operator, pointer operators(&
and *) and member selection operators (. and ->).

Comma operator: The comma operator is used to link the related expressions together. Acomma-
linked list of expressions is evaluated left to right and the value of right- most expression is the value
of the combined expression. For example, the statement

value = (x=10, y=5, x+y);

This statement first assigns the value 10 to x, then assigns 5 to y and finally assigns 15. In for loops: for

(n=1, m=10; n<=m; n++, m++);

Sizeof operator: The sizeof is a compile time tor and when used with an operand, itreturns the
number of bytes the operand occupies. The operan be variable, a ant or a data type qualifier.
m = sizeof (sum); .~
n = sizeof (long int);
The sizeof operator is normally us etermin Iengths of arra structur n their sizes are not known to
the programmer. It is also used to a e dy |caII r|abIe execution of a program

Expressions:

An expression in C is some combina les, operators and function calls.
Examples:C=a + b;
tan (angle)

*Most expressions have a value based on their con
*A statement in C_is just an expression terminat
Example:
sum=x+y+z;
The rules given b

1. Ifanexpressionh ent i i arithmetic
expression witho nthes i

2.The operators of high level precedence are evaluatedfirst.

3.The operators at the same precedence are evaluated from left to right or right to left depending on
the associativity ofoperators.

Expression evaluation:

Expressions are evaluated using an assignment statement of the form:

variable = expression;

———
CSE,NRCM P.REVATHY,ASSISTANT PROFESSOR Page 33

Programming for problem solving[CS1103ES]

variable is any valid C variable name. When the statement is encountered, the expression is
evaluated first and the result then replaces the previous value of the variable on the left-hand side.
All variables used in the expression must be assigned values before evaluation is attempted

Ex:- x = a*b-c;

y =b/c*a;

z=a-b/c+d;

Ex:- x= a-b/3+c*2-1 when a=9, b=12, and ¢=3 the expression becomes. x = 9-

12/3 +3*2-1

Stepl: x = 9-4+3*2-1
Step2: x = 9-4+6-1

Step3: x = b5+6-1 0. o
Stepd: x =11-1 A
Step5: x =10 \(3 £

Operator precedence: oty
. .
Various relational operator diffe ioriti nce. rithmetic expression

contains more operators then the execu ill rfo according to their properties. The
precedence is set for t operators in C.

Type of operator Associativity
Unary operators T Right to left
Arithmetic operators * [.%,+,- Left to right
Bit — manipulation operators <<, >> Left to right
Relational operators Left to right
Logical operators Left to right

Conditional o

Assignment @

Note:
1. Precedence rules decide the order in which different operators areapplied

2. Associativity rule decides the order in which multiple occurrences of the same level
operatorsareapplied.

CSE,NRCM P.REVATHY,ASSISTANT PROFESSOR Page 34

Programming for problem solving[CS1103ES]

Hierarchy of operators in C :

The higher the position of an operator is, higher is its priority.When an expression
contains two operators of equal priority the tie between them is settled using the
associativity of the operators.

Associativity can be of two types—Left to Right or Right to Left

Left to Right means, as you go from left to right in an expression which operator among the two is
found, execute it first.Right to left means, as you go from right to left in an expression which operator
among the two is found, execute it first.

Consider expression a=3/2*5 Here there is a tie between operators of same priority, that is between /
and *. This tie is settled using the associativity of / and *. But both enjoy Left to Right associativity,
WhICh means as you go from left to right 2Nound SO execute |t | st.

The table clearly shows the associativity a@yrecedeﬁz of oﬁj orsinc.

RANK | OPERATORS ING ASSOCIATIVIT
Y
1 ++ -t ,
0
0 LEFT TO

N MEMBER ACE’GHT
R A

2 ++
; UNARY PLUS
i UNARY MINUS
| LOGICAL NOT RIGHT — TO
LEFT

~ BITWISE NOT

INDIRECTION

3
4
SUBTRACTION RIGHT
5 << BITWISE SHIFT LEFT LEFT TO
>> BITWISE SHIFT RIGHT RIGHT
6 < RELATIONAL OPERATORS LESSER
<= LESSER THAN OR EQUAL TO LEFT TO
> GREATER THAN RIGHT
>= GREATER THAN OR EQUAL TO
7 == ISEQUAL TO LEFT TO

CSE,NRCM P.REVATHY,ASSISTANT PROFESSOR Page 35

Programming for problem solving[CS1103ES]

I= IS NOT EQUAL TO RIGHT
8 & BITWISE AND LEFT TO
RIGHT
9 n BITWISE XOR LEFT TO
RIGHT
10 | BITWISE OR LEFT TO
RIGHT
11 && LOGICAL AND LEFT TO
RIGHT
12 I LOGICAL OR LEFT TO
RIGHT
13 2 TERANARY LEFT TO
RIGHT
14 = ASSIGNMER
+= ASSIGNMENT s
= IGNMENT BY DI
— NMENT BY.PI RIGHT TO
= ASSIENMENT BY.QUO LEFT
%= ASSIGN RE
<<= SIGN BY BITWIS SHIF #
>>= IGN BY WIS TS
= ASSIGN BY IS D
A= ‘ ISE XOR
|:
15 , LEFT TO
RIGHT
For Example:

i=2*3/4+4/4+8-2+5/8
i=6/4+4+8-2+5/8
i=1+4/4+8-2+5/8

i=1+1+8-2+5/8

i=1+1+8-2+0

i=2+8-2+0

i=10-2+0

i=8+0

i=8

CSE,NRCM P.REVATHY,ASSISTANT PROFESSOR Page 36

Programming for problem solving[CS1103ES]

Conditional Branching and Loops:

Writing and Evaluation of conditional statements (examples).

In C, when a logical operation is being evaluated, if the result is known before all sub expressions
have been evaluated, then the evaluation stops, or short circuits. The two situations where this can
occur is when the first expression of a logical AND operation is FALSE (zero) or the first expression
of a logical OR operation is TRUE (non-zero). In both of these cases, the result is already known. For
AND, if either of the two expressions is FALSE, the result will be FALSE. For OR, if either of the
two expressions is TRUE, then the result will be TRUE.

Example :

If we have two expressions being tested in a logical AND operation:

exprl && expr2
The expressions are evaluated from left ht. If exprlis LSE), then expr2would not be
evaluated at all since the overall result is a y kn tob e.

Truth table for AND (&&)
FALSE=0
TRUE=1

exprl

Expr2is not eval
Examples:
Lif (5| ++x)

{
printf("%d\n",x);
2.int X

if(5)|2&&++X)
printf("%d", x);

3.(a>=0) && (b < 10)
4.(a>b) || (o++/3)

5. (13 *a) * (b/13 ~1)

CSE,NRCM P.REVATHY,ASSISTANT PROFESSOR Page 37

Programming for problem solving[CS1103ES]

6if(@lflbliciidiiellfiigllhliljllk==1)
7.while((x &&y)==1)

8. if ((x < 10) && (y > 3))

Conditional Branching:

Conditional statements help you to make decision based on certain conditions. Theseconditions are
specified by a set of conditional statements having Boolean expressions whichare evaluated to a
boolean value true or false.

When we need to execute a block of statements only when a given condition is true then we use
variants of if statements. o

There are 4 if statements available n\@ simple if

Simple ifstatement.

if. . .elsestatement.

. Nested if.. .elsestatemen
. else ifladder
1 Simple if statement: Slmple if s
Syntax if (condition)

condition

>wn e

true

stmts

used to make a de sed on the avall
choice. It has the followi 3

stmt block;
}

stmt-x;
In this syntax,

e ifisthekeyword. <cond|t|on>|sarelat|onalex ressmnorloglcal
either true or fals
and *)’.

e The stmt block ca

e stmt-xis any valid
The flow of contr
Whenever simpl
orfalse.lftheconditionisfalse thecontroltransfersdlrectlytostmt Xwithoutconsideringthe
stmtblock. Iftheconditionistrue,thecontrolentersintothestmtblock.Once,theendofstmt block is reached,
the control transfers tostmt-x.

essionoranyexpression that returns
parentheses ‘(¢

either true

Example Program for if statement:

#include<stdio.h>

CSE,NRCM P.REVATHY,ASSISTANT PROFESSOR Page 38

Programming for problem solving[CS1103ES]

void main()

{

int age;

printf(enter age\n™);
scanf("%d",&age);
if(age>=55)

printf(“person is retired\n™);

¥

Output: enter age 57

person is retired

2. if—elsestatement:

65

o choices. It

%

ecision base

if...else statement is used to ma e following form:

Whenever if...else state encount irst th nditio sted. It gelther true or false.

If the condition is true, th I ente he tru stmt of true stmt block is
reached, the control transfers dy

If the condition |m e control enters int Ise stmt block by ue stmt block.
Once, the end of false st Kisr ansfers t-X.

J IF / ELSE

False True

Syntax:

if(condition)

{ ~\lf(C0r‘Idlt|0D
\\.; /
truestmt block;
false stmt true stmt
} Block Block
else

{

falsest

}

stmt-x

In this syntax,

e if and else are thekeywords.

e <condition>isarelationalexpressionorlogicalexpressionoranyexpressionthatreturnseither true or false.
It is important to note that the condition should be enclosed within parentheses (and).

e Thetruestmtblockandfalsestmtblockaresimplestatementsorcompoundstatementsornull statements.
e stmt-x is any valid Cstatement.

The flow of control using if...else statement is determined as follows:

CSE,NRCM P.REVATHY,ASSISTANT PROFESSOR Page 39

Nested if (else) Statements:
* The statement executed as

Programming for problem solving[CS1103ES]

Program for if else statement:

#include<stdio.h>

void main()

{

int age;

printf(enter age\n");
scanf("%d",&age);
if(age>=55)

printf("person is retired\n");
else

printf("person is not retired\n");

}
Output: enter age 47

person is not retired

‘use c&aanother if statement
matte the in!ntation implies)

e clause belongs

These are called nes
An else clause is matche
Braces can be used to specify the if stat

Flow chart:

-
o
1~
3
o

Statement-3

y

Statement-2 Statement -1

v

- Statement-x -

Example program:
void main ()
int a, b;

CSE,NRCM P.REVATHY,ASSISTANT PROFESSOR Page 40

Programming for problem solving[CS1103ES]

scanf(“%d%d”, &a, &b);

if(a>b)
{
if(a>c)
printf("%d\n", a);
else
printf("%d\n", b);
}
else
{
if(c>h)
printf("%d\n*, c);
else '
printf("%d\n“ , b); } Sy of
} ”,’» -
. < n v
Else-if ladder: "
e Else if ladder is one of the co nal control- ow ttatements

e |tisusedto make a decision a Itiple ch |cg$

D
-
Flow chart:) A
T b o
conditioni
Statement-1 T

condition2

Statement-:2

Statement-3 default stmt

. | .

I stmt—x l

Example Pro

void main()
{

int m1,m2,m3,avg,tot;

printf("enter three subject marks");
scanf("%d%d%d", &ml,&m2,&m3);

tot=m1+m2+m3;

CSE,NRCM P.REVATHY,ASSISTANT PROFESSOR Page 41

Programming for problem solving[CS1103ES]

avg=tot/3;
iflavg>=75) {
printf("distinction); }

else if(avg>=60 && avg<75) {
printf(“first class"); }

else if(avg>=50 && avg<60) {
printf("second class"); }
else if (avg<50) {
printf("fail");

k

k

Switch Statement:

(4

o
U

switch statement is one of decision-maki

used to make a decisi‘; multiple choices

Syntax:

J
ts. Just Ilke else if ladder, it is also

tatement has the fov

switch(<exp>)

{

case<exp-val-1>: statements block-1;

break;
case<exp-val-2>: statements block-2;

break;
case<exp-val-3>:
break;
case<exp-val-N>: stateme
break;

default: default statemen

}

Next-statement;

In this syntax,

e switch, case, default and break arekeywords.
e <exp>isanyexpressionthatshouldgive anintegervalueorcharactervalue. Inotherwords,it should never
return any floating-point value. It should always be enclosed with in parentheses (and). It should also

CSE,NRCM P.REVATHY,ASSISTANT PROFESSOR Page 42

Programming for problem solving[CS1103ES]

be placed after the keyword switch.

e <exp-val-1>, <exp-val-2>, <exp-val-3>.... <exp-val-N>should always be integer constants
orcharacterconstantsorconstantexpressions. Inotherwords, variablescanneverbeusedas
<exp-val>. There should be a space between the keyword case and <exp-val>. The keyword
casealongwithits<exp-val>iscalledasacaselabel. <exp-val>shouldalwaysbeunique;no duplications
areallowed.

e statements block-1, statements block-2, statements block-3... statements block-N and default
statementsblockaresimplestatements,compoundstatementsornullstatements. Itisimportant to note that
the statements blocks along with their own case labels should be separated with a colon (:)

e The break statement at the end of each statements block is an optional one. It isrecommended
thatbreakstatementalwaysbeplacedattheendofeachstatementsblock. Withitsabsence,all the statements
blocks below the matched case label along with statements bI‘)ck of matched case get executed.

Usually, the result isunwanted. !
'}}V' .‘ ’
e Thestatementblockandbreakstai@ggentcanbeenclose mapépﬁ‘curlybr {and

1.

e The default along with its state statement can be placed at

block is an dgtlg}}al one. The
the end of default stateme block. TheSdefault statements b can be placed at anywhere in the
switch statement. If they ar %d at a‘r place other end, |tl'Ls‘Q}11pulsory to include a
break statement at the end of default stat bIo‘

e Next-statement is a vali Cstatement

switch
(conditional expression)

case T
condition 1

Ffalse

statement block executed
it condition 1 is Ll
true{satisfFied).

Y

case rue statement block executed
cac if condition 2 is
condition 2 truelsatisfied).

i False

rue statement block executed
i condition 'm is -
truelsatisfied).

case
condition "'n'

statement block executed
it no condition is
true (satisTied).

-
-l

=== A A T o =

Whenever, switch statement is encountered, first the value of <exp>gets matched with case
values. If suitable match is found, the statements block related to that matched case gets executed. The
break statement at the end transfers the control to the Next-statement.

If suitable match is not found, the default statements block gets executed and then the control gets
transferred to Next-statement.

Example Program:

CSE,NRCM P.REVATHY,ASSISTANT PROFESSOR Page 43

Programming for problem solving[CS1103ES]

#include<stdio.h> void main()
{ inta,b,c,ch;
printf("\nEnter two numbers :");

scanf('%d%d",&a,&b); printf("\nEnter the choice:"); scanf("%d",&ch);
switch(ch)

{

case 1: c=a+b;

break; case 2: c=a-b;

break; case 3: c=a*b;

break; case 4: c=a/b;

break;

default: printf(*‘ enter a valid choice \n”);

}
printf(*\nThe result is: %d",c);
}

Output: enter the choice 1

Enter two numbers 4 2 ‘

6

Use of switch statemew ’ '
e \We can use Swi tatements alter adder.

e The switch sta is often faster than ...elseLad
e Switch statement syntax is wi sy tou

Iteration and Loops: while, do-while, for loops.

It is the process where a set of instructions or statements is
of time or until a condition is satisfied. These statements als
also be classified as contro

Iteration statements are ommon
three types of looping state

1. while L

2. do while

3. forloop

ted repeatedly for a specified number
the control flow of the program. It can

while Loop:

The simplest of all the looping structures in c is the
while statement. A WHILE loop has one control
expression, andexecutes as long as that expression
is true.

The basic format of the while statement is:

Initialization statement

h 2

Trle False

while loop body

CSE,NRCM P.REVATHY,ASSISTANT PR

Programming for problem solving[CS1103ES]

Syntax:
while(condition)

{

statements;

) Flow chart for while Ioopé

Thewhileisanentry—controlledloopstatement. Theconditionisevaluatedandifthecondition is true then the
statements will be executed. After execution of the statements the condition will be evaluated and if it

is true the statements will . be executed on again. This process is
repeateduntiItheconditionbecomesfalsear%ontrolistransf@toﬁheloop.Onexit the program

(4

continues with the statement immediately the body of t

Program to print n natural numbe ing using wh

#include<stdio.h>
void main()

{ ‘
inti,n;

printf("enter the ra X

scanf("%d",&n); ‘

5)
&

i=1;
while(i<=n)
{
printf("%d ")i);
i=i+1;
}
}

Output: enter therange 10123456

78910

Do-while Loop: .

It is one of the looping con tate i rol ment. i.e., it
tests the condition after ex g the d bo

The main difference between “while” and “do-while” is that in “do-while” statement, theloop body gets
executed at least once, though the condition returns the value false for the firsttime, which is not possible with
while statement. In “while” statement, the control enters into the loop body only when the condition
returnstrue.

Syntax:

Initialization statement;

Initialization statement

h 4

do-while loop body
CSE,NRCM P.REVATHY,ASSISTANT I ¢
P

Programming for problem solving[CS1103ES]

do
{
statement(s);
} while(<condition>);
next statement;
In this syntax:

whileanddoarethekeywords.<condition>isarelationalexpressionoracompoundrelational ~ expression or any
expression that returns either true or false. initialization statement, statement(s) and next_statement are valid
‘c’statements.

The statements within the curly braces called as @ile loop body. The updating
statementshouldbeincludedwithinthedo-iillileloopbody:- her Idbeasemi-colo at the end

ofwhile(<condition>).

Whenever “do-while” statement is.encountered, initialization state gets executg(i rst. After then, the
control enters into do-while loop b all the ents in that b

| be ex hen the end of the
body is reached, the condition is teste with ate pc alue.
If the condition returns the va he control transfer t statement without € ing do-while loop

t
body. Hence, it states that, theﬁloop gets ex r the firstgime, th(’:?)ndition returns

the value false.

Program to print n natural numbers using us

#include<stdio.h>
voidmain()

{

inti,n;
printf("enter the
scanf("%d",&n);

i=1;
do
printf("%d ")i); .
i=i+1;
}

while(i<=n);

}
Output: enter the range 8

1 2345678

3. for loop:

It is one of the looping control statements. It is also called as entry-controlled looping control
statement. i.e., it tests the condition before entering into the loop body. The syntax for “for” statement

CSE,NRCM P.REVATHY,ASSISTANT PROFESSOR Page 46

Programming for problem solving[CS1103ES]

is as follows:
Syntax: -
for(expl;exp2;exp3) i

h
{
for-body;

for loop body

} |
next_statement; Next_statement =P

In this syntax,

for is a keyword. expl is the initializatior‘\éﬁleme
the statements must be separat ith commas. exaél

compound relational expr or any ession tha urns either true or
t.l ereismoh:?ﬁonestat en theymust be separated
d

ore than one statement, then
he condition. | relational expression or a

false. Theexp3istheupdatingstate

with commas. expl, exp Xp3 sho separ with emi-colons: expl, exp2, exp3, for-
body and next statement id ‘c ents. , for-b a sirgﬁ"lement or compound

statement or a nullstatement.

Whenever“for"statem‘untered,ﬁrstexp lg
then the body of the loop i

ted. Afterthen,exp2

' exp2 is true

red back to the for statementafter
dthenewvalueisagain tested .if it
till condition isfalse.

satisfies body of the loop is executed .This proc
Program to print n natural numbers using

#include<stdio.h>
void main()

inti,n;

printf("enter the

scanf("%d",&n); .
for(i=1;i<=n;i++)

printf("%d\n",i);

}

Output: enter the value 5 12345

Nested for Loop:

Nested for loop refers to the process of having one loop inside another loop. We can have
multiple loops inside one another. The body of one ‘for’ loop contains the other and so on. The
syntax of a nested for loop is as follows(using two for loops):

CSE,NRCM P.REVATHY,ASSISTANT PROFESSOR Page 47

Programming for problem solving[CS1103ES]

Syntax:
for(initialization ; condition; update)
for(initialization ;condition;update) /lusing anothervariable
body of the inner loop

body ofouterloop //(might or might not be present)
}

Example Program :

#include <stdio.h>

void main()

t
intij;
for(i=1;i<=5;i++)

for(j=1;j<=i;j++) é
prlntf("%d",j),
printf("\n"); ‘

Output:
1

12

123
1234
12345

¥
¥

Jumping control-flow statements:

Jumping con state
specified loc t
control state

\ Jumping Control Statements ‘

A 2
| break | ’ continue | | goto

break statement:

The—breakstatementisusedwithintheloopingcontrolstatements,switchstatementand
nestedloops.Whenitisusedwiththefor,whileordo-whilestatements,thecontrolcomes out
corresponding loop and continues with the nextstatement.

ontrol to the
e 3 jumping

of the

CSE,NRCM P.REVATHY,ASSISTANT PROFESSOR

Page 48

Programming for problem solving[CS1103ES]

Whenitisusedinthenestedlooporswitchstatement,thecontrol comesoutofthatloop/
switchstatementwithinwhichitisused.But,itdoesnotcomeoutofthecompletenesting.

Syntax for the —break statement is:break;

Any loop

{
statement_1;
statement_2;
break;

}

next_statement
In this syntax, break is the keyword.
The following representatigg shows t nsfer of contr en

b

Program for break sta t:

b?atement is used:
#include<stdio.h>

#include<conio.h>

int main()

{

é)
&

inti;

for(i=1; i<=10; |
{

if(i==6)

break;
printf("%d",i);

}
}
Output:12345

continue statement:
iterationand

the continue i pe used only in
loop construc

Syntax for ca

where continue is the keyword.The following representation shows the transfer of control when
continue statement is used:

Any loop

{
statement_1;
statement_2;

continue;

CSE,NRCM P.REVATHY,ASSISTANT PROFESSOR Page 49

Exit :

goto statement
The goto statement transfers the control to the specified location unconditionally. There are certain
situations where goto statement makes the program simpler. For example, if a deeply nested loop is to be
exited earlier, goto may be used for breaking more than one loop at a time. In this case, a break statement
will not serve the purpose because it only exits a single loop.

Syntax for goto statement is:

label:

Programming for problem solving[CS1103ES]

next_statement;
Program for continue statement:

#include<stdio.h>
#include<coni 0.h>

int main()

{

int i, sum=0;
for(i=1; i<=n; i++)
{

if(n==6)

continue;
printf("%d\n"i);

}

}

Output: 1234578910

The C library function v&nt st
return any value.

void exit(int status) ‘
/[Example

#include <stdio.h>

#include <stdlib.h>

int main()

{

printf("Start oftheprogram. \n");
printf("Exitingtheprogram. \n");
exit(0);

printf("End oftheprogram.
return(0);

Cl
ediately. This function does not

‘rmnls the

}

Output:
Start of the pr
Exitingtheprog

CSE,NRCM P.REVATHY,ASSISTANT PROFESSOR Page 50

Programming for problem solving[CS1103ES]

{

statement_1;

statement_2;

goto label;

In this syntax, goto is the keywo Id be ended with a colon (:).

The identifier following goto is a d. The name of the statement or

and labe ny valid ide r and sh
ent label ed not be d
label can also be used as a variable e i the sa gram ifgt is'¥€Clared appropriately. The compiler
identifies the name as a W app in a goto stat and gdiable if it appears in an

expression.

If the block of statemen
backward and that goto
the goto statement, then the

t has label app be
as backward go
ol ha

e statement, the control has to move to

e block ofstatem has label appears after

d as forward goto.
p'rintf("together.");

- NRCM

Output: Hello Let us learn C Language together.

Program for goto statement:

#include<stdio.h>
void main()

{

printf("Hello™);
goto X;

y:

printf("C Language"
goto z;

X:
printf("Let us learn™)

goto y;
.

Type conversion:

CSE,NRCM P.REVATHY,ASSISTANT PROFESSOR Page 51

Programming for problem solving[CS1103ES]

It is a process of converting a variable value or a constant value temporarily from one data type to
other data type for the purpose of calculation is known as type conversion.

There are two types of conversions
i.. Automatic type conversion (or) Implicit conversion.
ii . Type Casting (or) explicit conversion (or) manual conversion.

Implicit: In this lower data type can be converted into higher data type automatically. The figure
below shows the C conversion hierarchy for implicit —type conversion in an expression:

The sequence of rules that are applied while implicit type conversion is as follows: All

short and char are automatically convertemto int then v
long double the\QQer will be con to long double and the result

1.if one of the operands is
will be longdouble.

e, the other converted t le and the result will

ill be conver loat a e.iesult will be float.
I ‘ converted to unsigned long int and

2.else, if one of the operand is
bedouble.

3.else, if one of the operan t ,the

4.else, if one of the operand is unS|gned
the result will be unsi

5. else, if one of the operand’isS long i

a) if unsigned int can be converted into |
and the result will be longint.

other i ed intt

t operand will be converted as such

b)else both operands will be converted to u ong int and the result will be unsigned

longint.

6. else if one of the operand is long int ,the other
longint.

onverted into long int and the result will be

7.else if one of t and the result

will be unsignedi

The final result o
sign before assi
assignment.

e assignment
ng the final

i. float to int causes truncation of the fractionalpart

ii. double to float causes rounding ofdigits

iii. long int to int causes dropping of the excess higher orderbits

CSE,NRCM P.REVATHY,ASSISTANT PROFESSOR Page 52

Programming for problem solving[CS1103ES]

~" [long double |
Conversion / | double |

hierarchy / [float |
> |unsigned long int|
/ [longint |
[int |

| short | char |

Fig: Conversion hierarchy

Example : Consider the following varia types: int

In this type of conversion, the r@n an con ne dat e tger
datatype explicitly .Suc sions a known as for nversio
or manual conversions or t ing.

Syntax: (datatype) (expression) EXpressi be ‘an variab

along with their

i,x; float f; double d; longint I;

Explicit:

Ex:y = (int) (a+b) y= le(x)) doublea =6
int result = (int) (a) + (int) (b); result = tead
int a=10;

float(a)> 10.00000
Example:
/lconverting fahrenheit to celsius by type casting #
#include<conio.h> void main()
{

float c,f;

clrscr();

printf(*\n enter fahrenheit:");
scanf("'%f", &f);

c=(float)5/9*(f-32);

printf("\n c=%f"c);

getch();

CSE,NRCM P.REVATHY,ASSISTANT PROFESSOR

Page 53

Programming for problem solving[CS1103ES]

)

Managing Input and Output:

Managing input and output operations:

Reading, processing and writing of data are the three essential functions of a computer
program.Mostprogramstakesomedataasinputanddisplaytheprocessed data.Wehavetwo
methodsofprovidingdatatotheprogramvariables.Onemethodistoassignvaluestovariables
throughtheassignmentstatementslikex=5,a=0andsoon.Anothermethodistousetheinput function scanf, which can
read data from a keyboard. We have used both the methods in programs. For outputting results, we have used
extensively the function printf, which sends results out to aterminal.

The program takes some I/P- data, pro
the program

Input — Qutput functions:
" p)
S it and the

We hﬁwo methgds for providing data to

riables in a

gram.
tio car‘t throﬁ
2!

(i) Assigning the data to th

(ii)By using I/P-O/P ts.

C language has 2 types of 1/0 statements."All thes

1.Unformattedl/Osta

o')
unction calls.
ed 1/0 sta ements'

Unformatted 1/O statements:

i/p function o/p function
1)getchar() putchar()
2) gets() puts()

3)getc()
4)getw()
5)getch()
6)getche()

getchar ():- It reads single
Syntax @ - C
Ex:- char x;

X = getchar();
putchar ():- This function is used to display one character at a time on the standard outputdevice.

Syntax:-putchar(variable_name);
Ex:- char x;

putchar(x);

CSE,NRCM P.REVATHY,ASSISTANT PROFESSOR Page 54

Programming for problem solving[CS1103ES]

program:
void main()
{
char ch;
printf(“enter a character:");
ch=getchar();
printf("\n Character is:");
putchar(ch);

}
Output:
enter a character:a

character isa

gets():- This function is used to read group of cha s(string) from andard I/P device.

/
'~

Syntax:-gets(string name)

Ex:- gets(s);

puts():- This function is used to display string to t

Syntax:-puts(string
Ex:- puts(s);

program:

void main()

{

char
puts(“enter n:
gets(s);
puts(“print
puts(s);

}

Output:

enter name r

print name : ramu

getch():- This function reads a single character directly from the keyboard without displaying onthe screen.
This function is used at the end of the program for displaying the output (without pressing (Alt-F5).

Syntax: char variable_name = getch();

Ex:- char c;

CSE,NRCM P.REVATHY,ASSISTANT PROFESSOR Page 55

Programming for problem solving[CS1103ES]

c = getch();

getche():- This function reads a single character from the keyboard and echoes(displays) it tothe current text
window.

Syntax:-char variable_name = getche();
Ex:- char c;
¢ = getche();

Program:

voidmain()

{

charch,
printf(“enter char")
ch = getch();

printf("%c", @

printf("enter char") "7
c = getche(),

printf(*%c",c); ‘

(4

}

Output :-

enter character a
enter character b
b

Character test functions:

ctype.h

Function

islower(c) Isc alower case letter?
isprint(c) Isc a character?

ispunct(c) Is ¢ a punctuation mark?
isspace(c) Is ¢ a white space character?

CSE,NRCM P.REVATHY,ASSISTANT PROFESSOR Page 56

Programming for problem solving[CS1103ES]

isupper(c) Is ¢ an upper case letter?

tolower(c) Convert c to lower case

toupper(c) Convert ¢ to upper case

program:

void main()

{

char a,x;
printf(“enter char”);
a = getchar();
if (isupper(a))
{

x= tolower(a);
putchar(x);
}

else
putchar(toupper(a));
}
Output:- enter char A
a

Formatted 1/O Functions:

Control string (als
to accept and give

(char-%c , int-%d

Control string and variables are separated by commas. Co
to I/P should match with each other.

ol'string and the variables going

Ex:-int n;
scanf(“%d”,&n);

Inputting Integer Numbers:

CSE,NRCM P.REVATHY,ASSISTANT PROFESSOR Page 57

Programming for problem solving[CS1103ES]

The field specification for reading an integer number is: %w d

The percentage sign(%) indicates that a conversion specification follows. w is an integer number
that specifies the field width of the number to be read and d known as data type character
indicates that the number to be read is in integer mode.

Ex:-scanf(“%2d,%5d”,&a,&Db);

The following data are entered at the console: 50

31426

Here the value 50 is assigned to a and 31426 to b

Inputting Real Numbers:
The field width of real numbergdis not to ecified unlik gers. Thegefore scanf reads
real numbers using the simple
a')
ut: 23.45 34. value&is assigned to x and 34.5 is
is %

Suppose the following wtere
assigned to y.

Inputting character strings:
The field specification for reading character

‘:ation %f.
Ex: scanf(“%f %f”,&x,&y);

%c may be used to read a single character.
Ex:scanf(“%s”,namel);

Suppose the foll
Griet is assigned t el.

Formatted Output:

printf(): This n i . are produced
insuchawaythatth nde to
give clarity of the t prod

Syntax:- printf(“control string”, varl,var2......);

Control string consists of 3 types ofitems

1. Characters that will be printed on the screen as theyappear.

2.Format specifications that define the O/P format for display of eachitem.

3.Escape sequence chars such as \n, \t and\b.....

CSE,NRCM P.REVATHY,ASSISTANT PROFESSOR Page 58

Programming for problem solving[CS1103ES]

The control string indicates how many arguments follow and what their types are.

The varl, var2 etc..are variables whose values are formatted and printed according to the
specifications of the control string.

The arguments should match in number, order and type with the format specifications

O/P of integer number: - Format specification :%wd

Format (0} 4

EREK
Print("%d”, 9876);
LI o8 [7]6]
Printf*%6d”,9876);
printf(“%d”,9876);
Lofs [A6][[|
Print(“%6d”,9876);
Print(“%06d”,9876); o Jo Jo[8 [7]6]
h | el

O/P of real number: %w.pf

Indicates minimum number of positions that are to be used for display of the -t)
W--mm value. ~»

N 4

P Indicates number of digits to be displayed after the decimal !}
- point.
Format y—98.7654 oP '
printf(—%7.4ly) lo 8 [7[6 [54]
printf(—%7.21y) L [Tol8]. [7]7]
printf(—%-7.2fly) L1717 11]

printf(—%10.2el,y)

LI T o [slsfef+ o] |

O/P of single characters and string:

Yowe, %%Ws

Format

s Rla [7/U] [R[Afj [e[s[h[[Rfa [NJi]
otss [[RJa |1 U] [RIA[I[E]s [n] [Rfa Ju [i |
%18s R|A|j U Rla [T | E[S |h Rla |n |i

CSE,NRCM P.REVATHY,ASSISTANT PROFESSOR Page 59

Programming for problem solving[CS1103ES]

Arrays: one- a
elements of arra
characters, basic
arrays of strings
Structures: Defi
Pointers: Idea of pointers, Defining pointers, Pointers to Arrays and Structures, Use of
Pointers in self-referential structures,Enumeration data type.

anipulating
as array of
strstr etc.),

Arravs

Introduction :

The fundamental data types, namely char, int, float, double and variations of int and double can store
only one value at any given time. Therefore they can be used only to handle limited amounts of data.In
many applications , we need to handle a large volume of data in terms of reading, processing and

CSE,NRCM P.REVATHY,ASSISTANT PROFESSOR Page 60

Programming for problem solving[CS1103ES]

printing. To process such large volume of data C supports a derived data type known as ARRAY that
facilitate efficient storing, accessing and manipulation of data items.

Definition :

An array is a fixed-size sequenced collection of elements of the same data type.

Examples where the concept of an array can be used are :

List of employees in anorganization

List of products and theircost

Test scores of a class ofstudents.

List of customers and their telephone numbers.etc..

Since an array provides a convienent structurefor representing data, it is classified as one of the data
structures in C.
4
"

(4

Types of Arrays :

1. One-dimensionalarrays
2. Two-dimensionalarrays

3. Multi-dimensionalar

@
53

A list of items ca i e sub
variable is called a singlé-subscri i i | array.

ONE-DIMENSIONAL ARR 3

d such a

DECLARATION OF ONE-DIM

Like anyother variable, arrays must be decl
can allocate space for them inmemory.

ey are used so that the compiler

Syntax:type variable-name[size];

The type specifies the type of element that will be contain e array, such as int, float or char.

The size indicates the maximum number of elements that can be stored inside the array

Fore.g.-

int number[5];

Declares the number to arra . i i the
computer reserves five st locatio

number[0]

number[1]

number[2]

number[3]

number[4]

CSE,NRCM P.REVATHY,ASSISTANT PROFESSOR Page 61

Programming for problem solving[CS1103ES]

Note :
1. any reference to the arrays outside the declared limits would not necessarily cause
an error. Rather, it might result in unpredictable program results.
2. The size should be either a numeric constant or a symbolicconstant.

INITIALIZATION OF ONE-DIMENSIONAL ARRAYS:

After an array is declared, its elements must be initialized. Otherwise, they will contain “garbage” . an array can be
initialized at either of the following stages:

1. At Compile time 2. At run time
COMPILE TIME INITIALIZATION :

[3
We can initialize the elements of arrays if same way as #\ rdinary variables when
they are declared . \

Syntax:

type array-name[size]={list of s};
.'
the values in the list are separate mas. mple the state)
int number[5]={35,40,50,20,25}; re th ay of e and will assign the value to

each element as follows

W le number a:
er[O] 35
[1]
number[2]

number[3]

number[4] | 25

initialized. The remainin meric and NULL
if the type is char.For e.g
Will initialize the first thr

If we have more initiali
int number[3]={10,20,3

The size may be omitted

ugh space for all
initialized elements.

For e.g.-Int count[]={1,1,1,1};

Will declare the count array to contain four elements with initial values 1. This approach works fine as long as we
initialize every element in the array.

Character arrays may be initialized in a similar manner. Thus the
statement

char name[]={‘h’,’¢’,’I’,’I’,’0’,’\0’};

Declares the name to be array of five characters, initialized with the string “hello” ending

CSE,NRCM P.REVATHY,ASSISTANT PROFESSOR Page 62

Programming for problem solving[CS1103ES]

with the null character. Alternatively we can assign the string literal directly as
char name[]="hello”;

RUN TIME INITIALIZATION

An array can be explicitly initialized at run time. This approach is usually applied for
initializing large arrays. For example, consider the following segment of C program

for(i=0;i<100;i=i+1)
{

if(i<50)

sum[i]=0.0;

else
sum[i]=1.0;
} g

The first 50 elements of the sum are init to 0 Whilelmaining 50 are
initialized
to 1.0 at run time.
We can also use a rea% anf to_initiali
statements
int X[3];
scanf(“%d%c‘ol&x &X[2]):
will initialize array elements with the u

EXAMPLE PROGRAMS:

write a program to evaluate the following expression for

program :void main()
{

int i

float x[10],total;
printf(“enter
for(i=0;i<10;
scanf(“%f”,
total=0.0;

for(i=0;i<10;i++)
printf(“x[%d]=%f\n",i,x[i]);
printf(“\n sum of the squares =%f”,total);

}

TWO- DIMENSIONAL ARRAYS:

CSE,NRCM P.REVATHY,ASSISTANT PROFESSOR Page 63

Programming for problem solving[CS1103ES]

1D array variables stores a list of values only but there could be a situations where a table of values
have to be stored which need 2D arrays. For examples

e Periodictable

e Sales information of a company

e Data in spread sheetsetc.

The two dimensional (2D) array in C programming is also known as matrix. A matrix can be
represented as a table of rows and columns. A particular value in a matrix can be accessed by using

two subscripts such as Vij . here V denotes the entire matrix and Vij refers to the value in the ith ro

th

W

and j- column. An array of arrays is known as 2D array.
Syntax:type array-name[row_size][column_size];

2D arrays are stored in memory as shown beloh. g

)
0] -

Row(0 --- 310

‘ [11[0]

- 10

Rowl ___

INITIALIZING 2D ARRAYS:

Like the 1D arrays, 2D
initial values enclosed in braces. For example
int table[2][3]={0,0,0,1,1
Initializes the elements o
row. The above statemen

done row by

by surrounding th
We can also initi sint
table[2][3]={

{0,0,03,
{1,1,1}

j

When the array is completely initialized with all values, explicitly, we need not specify the
size of the first dimension. That is, the below statement is permitted.

int table[][3]=]={
{0,0,03,

CSE,NRCM P.REVATHY,ASSISTANT PROFESSOR Page 64

Programming for problem solving[CS1103ES]

{1,1,1}
&

If the values are missing in an initialize, they are automaticaaly set to zero. For example int

table[2][3]={ {1,1}.{2}};

Will initialize the first two elements of the first row to one, the first element of the second row to two,
and all other elements to zero.When all the elements are to be initialized to zero, the following short-

cut method may beused.

int m[3][5]={{0}.{0}.{0}};

the first element of each row is explicitly initialized to zero while other elements are
automatically initialized to zero.

Example program:
#include<stdio.>
void main()

{ -
int
disp[2][3];
inti, j;
for(i=0; i<2; i++)

{
for(j=0;j

{ “
printf("Enter value fordisp[%d][%d]:"}1,));

scanf("%d", &disp[i][j
}

(4

o

A

%

/IDisplaying array elements
printf("Two Dimensional array elements:\n");
for(i=0; i<2; i++)

Multidimensional arrays :

CSE,NRCM P.REVATHY,ASSISTANT PROFESSOR Page 65

Programming for problem solving[CS1103ES]

C allows arrays of three or more dimensions. The exact limit is determined by the compiler.

Syntax:
typearray-name[s1][s2][s3] [sm];Where si is the size of the i dimension.

Eg : int a[3][3][3];
int b[5][4][5][3];
A 3D array is essentially an array of arrays of arrays: it's an array or collection of 2D arrays,and a 2D array
is an array of 1D array.

Initializing 3d array:
int arr[3][3][3]= { {
{11, 12, 13},
{14, 15, 16},
{17, 18, 19}

o

Example Programs:

1.Develop a program to Find the Largest T
calculate their average

h> -

mbers in a given Array andalso

#include <stdio.
#define MAX
void main()
{
int array[M
printf("Enter %
for(i=0;i<

scanf("%d",

}

printf("Input interger are \n");
for (i=0; i < MAX;i++)

printf("%5d", array[i]);

}

printf("\n");

/* assume first element of array is the first

larges t*/ largestl =array][0];

/* assume first element of array is the second largest */
largest2 = array[1];

CSE,NRCM P.REVATHY,ASSISTANT PROFESSOR Page 66

Programming for problem solving[CS1103ES]

if (largestl < largest2)
{
temp = largestl;
largestl = largest2;
largest2 = temp;

}

for (i = 2; i<4; i++)
if (array[i] >= largest1)

largest2 = largestl,;
largestl = array[i];

¥

else if (array[i] > largest2)

{
largest2 = array[i];
}
}

printf("n%d is the first | \n", largest
printf("%d is the second large! , largest2);

/

printf("nAverage of %d and %d = %dMa:', larges rgest2, es largest2) / 2);
) 5"
Enter 4 integer numbe‘ '
23
79
58

Input integer are
80237958
80 is the first lar

is the secondlarge

Average of 80 an

2.Implement a program to insert an elements of an Arrai in the reiuirediosition
#include <stdi0.’ ‘ . ‘ ‘

int main()
{
int array[100], position, ¢, n, value;
printf("Enter number of elements in array\n");
scanf(*'%d", &n);
printf("Enter %d elements\n", n);
for (c =0; c<n;ct++)

CSE,NRCM P.REVATHY,ASSISTANT PROFESSOR Page 67

Programming for problem solving[CS1103ES]

scanf("%d", &array|c]);
printf("Enter the location where you wish to
insert anelement\n");
scanf('%d", &position);

printf("Enter the value to insert\n™);
scanf(*'%d",&value);
for (c = n - 1; ¢ >= position - 1; ¢c--)
array[c+1] = array[c];
array[position-1] = value;
printf("Resultant array is\n");
for (c = 0; c <=n;c++)

printf("%3d", array[c]);
return O;

¥

Output:
Enter the value of then=4

Enter the numbers 3
40 m
100

68

Enter the location where you wish
Enter the value to insert 35

3 35 40 100 80
3.Develop a program to reverse anarray

#include <stdio.h>

void main()

scanf("'%d", &n
printf("Enter
for(c=0;c<
scanf(*'%d", ;
for(c=n-1d=0; c>=0; c-, d++)

b[d] = a[c];
for (c=0; c<n; c++)
a[c] = b[c];

printf("Reverse array is\n");
for (¢ = 0; ¢ < n; ct+)
printf("%d\n",a[c]);
}

CSE,NRCM P.REVATHY,ASSISTANT PROFESSOR Page 68

Programming for problem solving[CS1103ES]

4. Program to add two
matrices #include<stdio.h>
#include<conio.h>

void main()

{

int a[5][5],b[5]1[5],c[51[5],r1,r2,c1,c2,i,j;

clrscr();

printf("\n enter rl,c1,r2,c2");

scanf("%d %d %d %d",&rl,&cl,&r2,&C2);
if(rl==r2&&cl==c2)

{

printf(*\n matrix addition possible™);
for(i=0;i<rl;i++)

{

for(j=0;j<cl;j++)

{

printf("\n enter a[%d][%d]:",i,j);
scanf("%d", &a[i][j]); \
}

J
e

(4

}

for(i=0;i<r2;i++)

{
for(j=0;j<c2;j++) N
{

printf("\n enter b[%d H)
scanf("%d",&b[i][j]);
}

}

for(i=0;i<rl;i++)

{

for(j=0;j<cl;j++)

{
;[i][i]=a[i][i]+b[i][i];
¥

printf("\n sum of

}
&

{
printf("\n");
for(j=0;j<cl;j++)

{
printf("\t%d",c[i]
}
}

else

{

printf("\n matrix multiplication is not possible™);

}
getch();

}

5.Program to multiply twomatrices

#include<stdio.h>

CSE,NRCM P.REVATHY,ASSISTANT PROFESSOR Page 69

Programming for problem solving[CS1103ES]

#include<conio.h>
void main()

{

int a[5][5],b[51[5],c[5][5],r1,r2,c1,c2,i,j,k;
clrscr();

printf("\n enter rl,c1,r2,c2");

scanf("%d %d %d %d",&rl,&cl,&r2,&C2);
if(rl==r2&&cl==c2)

{

printf("\n matrix mutliplication possible");
for(i=0;i<rl;i++)

{

for(j=0;j<cl;j++)

{

printf("\n enter a[%d][%d]:" i.j); % @
scanf("%d",&a[i][j]);

}

}

for(i=0;i<r2;i++)
{
for(j=0;j<c2;j++)
{

printf("\n enter b[%d][%d]:
scanf("%d", &b[i][j]); ‘ ‘

J
" 4

{
for(j=0;j<c2;j++)
{

c[i][j]=0;
for(k=0;k<c1;k++)

{
;[i][i]=c[i][i]+a[i][k]*b[k] 0l;

¥
by

printf("\n pro
for(i=0;i<rl;i++)
{

printf("\n");
for(j=0;j<c2;j++)
{
printf(*\t%d",c[i]

by
¥
¥

else

{

printf("\n matrix multiplication is not possible™);

}
getch();

¥

CSE,NRCM P.REVATHY,ASSISTANT PROFESSOR Page 70

Programming for problem solving[CS1103ES]

6.Program to display the transpose of amatrix

#include<stdio.h>

#include<conio.h>

void main()

{

int row,col,a[5][5],i,j,b[5][5];

clrscr();

printf(*\n enter order of matrix r,c:"); scanf("%d
%d",&row,&col); for(i=0;i<row;i++)

{

for(j=0;j<col;j++)

printf("\n enter a[%d][%d]:",i,j);
scanf("%d",&a[il[jD;

}
}

for(i=0;i<row;i++) % é
{

for(j=0;j<col;j++)

{

b[ilil=alillil; % ‘

}

} ‘
printf("\n transpose

ix b");
for(i=0;i<col;i++) %
{

printf("\n");
for(j=0;j<row;j++)

{
printf("\t %d",b[i][j]);

STRINGS
INTRODUCTION:

A string is a sequence of c defined between double

guotation marks is a string

Example : “ hello world”

“123ase$”

The common operations pel
» Reading and writingstrings
» Combining stringstogether
» Copying one strings toanother
» Comparing strings forequality
» Extracting a portion of astring

DECLARING AND INITIALIZING STRING VARIABLES:

C does not support strings as a data type. However, it allows us to represent strings as character
arrays.The general form of declaration of a string variable is:char string_name[size];the size

CSE,NRCM P.REVATHY,ASSISTANT PROFESSOR Page 71

Programming for problem solving[CS1103ES]

determines the number of characters in the string_name.
Example: char city[10];
char name[30];
when the compiler assigns a character string to a character array, it automatically supplies a null character(‘\0”) at the
end of the string. Therefore, the size should be equal to the maximum number of characters in the string plus one.
Like numeric arrays, character arrays may be initialized when they are declared. C permits a character array to be
initialized in either of the following two forms:
char city[9]="NEW YORK”;
char city[9]={6N”’E”,W,” 6,9Y9,909,9R’,9K’,’\09};
C also permits us to initialize a character array without specifying the number of elements. In such cases,
the size of the array will be determined automatically, based on the number of elements initialized.
For example: char string[]={‘G’,’0°,°0°,’D’,’\0°}; defines the array string as a five element array.
We can also declare the size much larger than the string in the initialize. That is,the

“GOOD” in it, terminates with the null character initializes all o lements to NULL.

\

| J\g} | 0

statement
char str[10]="GOOD”;is permitted. In this case‘?;computer create aracter array of size 10, places the value
n 5—'&‘

The storage will look like:
G [o |o

However, the following ion is ill

char str2[3]="GOOD”;This will res}‘hk comp

Note: we cannot separate the“ion from declarati
That is, char str[5]; Str="GOOD’ allo

READING STRINGS FROM TERMINAL :

€T’

Using scanffunction:
using %s, it automatically terminates the string with °
large enough to hold the input plus null character.

er, so the arrray size should be

e.g.- char name[10];
scanf(%s”,name);

Note: in the case of charagtera

Disadvantage: scanf termi then only new will be
read in array name.We can a specified number of

characters from the input st
If w is equal or greater than the number of charcters typed, then entire string will be stored in thevariable

If wis less , then excess characters will be truncated and left unread.

Example: scanf(““%6s”,name)
griet---reads entire string

gokaraju---reads only gokara

CSE,NRCM P.REVATHY,ASSISTANT PROFESSOR Page 72

Programming for problem solving[CS1103ES]

Reading a Line of Text:

%s and %ws can read only strings without whitespaces. That is, they cannot be used for
readingatextcontainingmorethanoneword.However,Csupportsaformatspecification known as the
edit set conversion code%[..] that can be used to read a line containing a variety of characters,
including whitespaces.

Forexample:

Char line[80];
scanf(“%[\n]”,line);
printf(“%s”,line);
will read a line of input from the keyboard and display the same on the screen.

Using getchar and getsfunction:

Function getchar is used to read s character fro terminal. This function

repeatedly can be used to read successiv the input and place them

into a character array. Thus, tire line , the re is terminated
when the newline character (‘\ ntered and the ni erted at the end
of the string

Syntax:char ch;
ch=getchar();

Example prog ram

#include<stdio.h>v
oid main()

{

char line[50],ch;
int i=0;

printf(“‘\n press enter at the end of input”); do
{

ch=getchar();
line[i]=ch; i++;
}while(ch!="\n");
i=i-1; line[i]="\0;
printf(“%s”,line);

}
another more con nt i i use
the library functio avai

str is a string va , gets f ntil a new-
linecharacter is encountered and then appends a null character to the string. unlike scanf, it does not
skip whitespaces.
Example:char line[80];

gets(line);

printf(“%s”,line);
the last two statements can be combined as follows printf(“%s”,gets(line));

WRITING STRINGS TO SCREEN
Using printffunction

CSE,NRCM P.REVATHY,ASSISTANT PROFESSOR Page 73

Programming for problem solving[CS1103ES]

The format %s can be used to display an array of characters that is terminated ny the null character
using printf function.

printf(%s”,line);

We can also specify the precision with which the array is displayed. for instance, the
specification %10.4indicates that the first four characters are to be printed in a field

width of 10 columns. left-justified.

Features of %os specifications:
1. When the field width is less than the length of the string, the entire string isprinted.
2. The integer value on the right side of the decimal point specifies the number of
characters to beprinted.
3. When the number of characters to be printed is specified as zero, nothing isprinted.
4. The minus sign in the specification causes the string to be printedleft-justified.
5. The specification %.ns prints the first n characters of thestring.

Example program:
ingu various fo'mat specifications.

Write a C program to store the gtring and y the
void main()

{

char str[14]=

”good mormng 3
printf(“%14s”,str);
printf(“%4s”,str);
printf(“%14.4s”,str); .

printf(“%-14.4s” str);
printf(“%14.0s”,str);
printf(“%.3s”,str);
printf(“%s”,str);
}

Output:

good morning

good morning
Using putchar and puts

putchar function is used t

syntax:
char ch="a"; putchar(ch);
The function putchar requires one parameter. This statement is equivalent to:printf(“%c”,ch);we can use this function
repeatedly to output a string of characters stored in an array using a loop.

Example:

char str[13]="good morning”;

for(i=0:i<12;i++)

putchar(nameli]);

CSE,NRCM P.REVATHY,ASSISTANT PROFESSOR Page 74

Programming for problem solving[CS1103ES]

Another and more convenient way of printing string values is to use the function puts
declared in the header file <stdio.h>.

syntax:
puts(str);

where str is a string variable containing a string value, this prints the value of the string variable str
and then moves the cursor to the beginning of the next line on the screen.

ARITHMETIC OPERATIONS ON CHARACTERS:

C allows us to manipulate characters the same way we do with numbers. Whenever a character constant or
character variable is used in an expression, it is automatically converted into an integer value by the system. For
e.g.- x=a’

printf(“%d”,x); will display the number 97 on creen. x=‘a’-
printf(“%d”,x); will print 96, a=97

character constants can also be used lational ressi

Example: ch>=‘A’ && ch<=‘Z’ test her the chara the variable ¢ upper-cas letter.
We can convert a character digit to its alent intege using x= ch r-"0’ .-

Example:

intx;

x=‘7"-"0’;

printf(“%d”,x);

prints x=7 // ASCII value o
ASCII value of 0=48

S

The C library supports a function atoi (string)

&

to their integervalues.
Example: char [10] number =“1988”;
year=atoi(number);

The function converts the string constant “1988”, to its nu quivalent 1988.
Present in header file <stdlib.h>.C does not provide opera t work on strings directly like :
str1="ABC”;

str2=strl; is invalid

STRING HANDLING F

The C library supports a la : any of the string
manipulations. following at : '

Strcat() Concatenates two strings
Stremp() Compares two strings

Strepy() Copies one string over another
Strlen() Finds the length of a string

CSE,NRCM P.REVATHY,ASSISTANT PROFESSOR Page 75

Programming for problem solving[CS1103ES]

Strrev() Reverse a string

strcat() Function:
The strcat function joins two strings together. it takes the following form:
strcat(stringl, string2);

stringl and string2 are character arrays. when the function strcat is executed, string2 is appended to stringl. It does
by removing the null character at the end of stringl and placing string2 from there. the string at the string2 remains
unchanged. For example consider the following three strings:

strl \/ E R Y \0
7 i
/
A)
'/

str2 G (0] \0

strcat(strl,str2) will result in:

V E "

We must make sure that the.size of strl to whi
string.strcat function may %ﬂend a string co
strcat(strl,”good”);

C permits nesting of strcat functions. for exa
concatenates all the three strings together:

stremp() Function:

The strcmp function compares two strings identified by
not, it has the numeric difference between the firs
form:stremp(strl,str2);strl and str2 may be string variab

s large enough commodate the final
ing varia following is valid:

cat(strl,str2),str3);is allowed and
red in strl.

ents and has a value 0 if they are equal. if they are
atching characters in the strings. it takes the
tring constants.

Example: strcmp(strl,str2);
stremp(strl, “john”™);

stremp(“rom”, “r
strepy() Function:
The strepy() function work 0S . ,5tr2);and assigns the

contents of str2 to tr2 ma

Example:strcpy(city, “DELHI”);

will assign the string “DELHI” to the string variable city. similarly,the statement strcpy(cityl,city2) will assign the
contents of the string variable city2 to the string variable cityl. the size of the array cityl should be large enough to
store the contents of city2.

strlen() Function:

This function counts and returns the number of characters in a string. it takes the formn=strlen(string); where n is
an integer variable, which receives the value of the length of the string.

CSE,NRCM P.REVATHY,ASSISTANT PROFESSOR Page 76

Programming for problem solving[CS1103ES]

Example :

write a program that reads 2 strings s1,s2, and check whether they are equal or not, if they
are not , join them together. then copy the contents of sl to the variable s3. at the end , the
program should print the contents of all the 3 variables and their lengths.

#include<stdio.h>
void main()

{

char s1[20],s2[20],s3[20];
int x,11,12,13;

printf("\n enter two strings constants");
scanf(*'%s%s",s1,52);

x=strcmp(s1,s2);

if(x!=0)

{

printf("\n strings are not equal™);
strcat(s1,s2);
}

else
printf("\n strings are equal'); strcpy(S3,s
I1=strlen(s1);

I2=strlen(s2);
I3=strlen(s3);

printf("\n s1=%s IM characters”,s1,1
printf("\n s2=%s len
}

output:
enter two strings constants

welcome students

strings are not equal
sl=welcome length=15
s2=students
s3=welcomestudents length=15 characters

characters

strrev() function:
strrev() fu S 3 : on is given below.

char *strrev(char
example: string “

Program:
#include <stdio.h>
#include <string.h>
void main()
{
char s[100];
printf("Enter a string to reverse:\n");
gets(s);
strrev(s);
printf("Reverse of the string: %s\n", s);

¥

CSE,NRCM P.REVATHY,ASSISTANT PROFESSOR Page 77

Programming for problem solving[CS1103ES]

output:
Enter a string to reverse: rajesh
Reverse of the string: hsejar

Strings with out string handling function:

string length:

#include<stdio.h>
void main()

{
char str[30];

int i,len=0;

clrscr();

printf(*\n enter the string™);

gets(str);

for(i=0;str[i]!'="0";i++)

len++; ’

printf(*\n the total no.of characters™ ™M themgi i %d", len-4);)
' ‘ &

&

#include <stdio.h> ‘

void main()

{
char str1[50], str2[50], i, j;
printf("\nEnter first string: ");
scanf("'%s",strl);
printf("\nEnter second string: ");
scanf("'%s",str2);
/* This loop is to store the length of strlini
* |t just counts the number of characters in strl

*You can also use strlen instead of this.
*/

* the end of str
*/

for(j=0; str2[j]!
{

stri[i]=str2[j];

/1'\0 represents end of string

str1[i]="\0";

printf("\nOutput: %s" strl);
}

/[string copy with out string handling function

#include<stdio.h>
void main()

CSE,NRCM P.REVATHY,ASSISTANT PROFESSOR Page 78

Programming for problem solving[CS1103ES]

{

char str1[30],str2[30];

inti;

printf(“enter the string 1:");
gets(strl);
for(i=0;str1[i]!="0";i++)
str2[i]=strl[il;

str2[i]="0";

printf(“the string after copy is :");
puts(str2);

getch();

}

// string reverse with out string handling function

#include<stdio.h> void main()

{

char str1[20],str2[20];

int i,len=1,j=0;

printf(*\n enter the string™);
scanf("'%s",strl);

for(i=0;str1[i]!="0"i++)
{
len++; %
}
n);

printf(“the length of ing is:%d",le
for(i=len-1;i>=0;i--,j+
str2[j]=strl[i];

str2[j]="\0";
printf(“the reverse of a given string is %s'
comparison with out string hand
#include<stdio.h>

void main()

{

char str1[30],str2[30];

int i,j,flag=0;
printf(“enter the s
scanf(*'%s %s",strlstr2);
for (i=0,j=0;str1][i

{
if(stri[i]!=str2[j])
{

flag=1; break;

}

}
if(flag==0)
printf("'the two strings are equal");
else

printf("'the two strings are not equal™);
getch();

¥

Array of Strings:

CSE,NRCM P.REVATHY,ASSISTANT PROFESSOR Page 79

Programming for problem solving[CS1103ES]

We often use list of character strings, such as a list of the names of students in a class,
list of the names of employees in an organization etc. A list of names can be treated as a table
of strings and a two-dimensional character array can be used to store the entire list.

for example, a character array city[5][15] may be used to store a list of 30 city names, each of
length not more than 15 characters. e.g.-

C H A N D I G A R h \0
M A D R A S 0

A H M E D A B A D 0

H Y D E R A B A D 0

B) M B Y 0

This table can be conveniently storec% ty by using the following
declaration:

char city[][]=
{ “CHANDIGARH”, %s 4

Example Programs:
#include <stdio.h>
#include <string.h>
void main()
{
inti, j, k, count = 0;
char str[50];
printf(“enter string\n");
scanf(*'%[™n]s", str);
k = strlen(str);
printf("prime char
for (i = 2;i <= k;i++
{
count =0;
for (j = 2;j <= kjj

{
if (1 % j == 0)

J 5, 13 'BAD”’ [13 MBAY’,};

n Strin '

count++;

¥
¥

if (count == 1)

{

printf("%c\n", str[i - 1]);
}

}

}

CSE,NRCM P.REVATHY,ASSISTANT PROFESSOR Page 80

Programming for problem solving[CS1103ES]

}

}

getch();
}
Structures

Definition: A structure is a collection of one or more variables of similar or different data types,grouped together under
a single name. By using structures variables, arrays, pointers etc can be grouped together.

Structures can be declared using two methods as follows:

(i) Tagged Structure:

The structure definition associated with the stru name is referr tagged structure. It doesn“t create an instance
of a structure and does not allocate any memory.

re definition ollows,

The general form or syntax of tagged s
struct TAG Ex:-
{
Type varaiblel,;
Type variable2;

Type variable-n;

h

Where,
1. struct is the keyword which tells the compiler that a st being defined.
2. Tag_name is the name of the structure.
3. variablel, variable2 ...

4. The members are decl

5. The closing brace mus

(i1) Type-defined s

The structure definition associated with the keyword typedef is called type-defined structure. This is the most powerful
way of defining the structure.

The syntax of typedefined structure is

typedef struct Ex:- typedef struct

{ {

Type varaiblel,; int htno[10];
Type variable2; char name[20];
...... float marks[6];
...... }student;

CSE,NRCM P.REVATHY,ASSISTANT PROFESSOR Page 81

Programming for problem solving[CS1103ES]

Type variable-n;
}Type;
where

A typedef is keyword added to the beginning of the definition.

B. struct is the keyword which tells the compiler that a structure is being defined.
C. variablel, variable2...are called fields of the structure.
D. The closing brace must end with type definition name which in turn ends with semicolon.

Variable declaration:
Memory is not reserved for the structyre definiti nce ariab e associated with the structure definition. The

members of the structure do not occup memory until re associated wj e structure variables.
For first method, m
struct TAG v1,v2,v3....vn;

ef'lled as fo
erful is ‘ '

For second method, which is‘/
Type v1,v2,v3,....vn;

Alternate way:

struct TAG

{

Type varaiblel,;

After defining the structure, variables ca

Ex:

struct book

{

char name[30];
int pages;

float price; }b1,b2,b3;

CSE,NRCM P.REVATHY,ASSISTANT PROFESSOR Page 82

Programming for problem solving[CS1103ES]

Example for the following scenario:

College contains the following fields: College code (2characters), College Name, year of establishment, number of
courses. Each course is associated with course name (String), duration, number of students. (A College can offer 1 to 50
such courses)

(i). Structure definition for college :-

struct college
{
char code[2];
char college_name[20];
int year;
int no_of_courses;

+
Variable declaration for structure col

void main()
{
struct college coll,col2,col3;

}
(ii). Structure definition for course :-

struct course

{
char course_name[20];
float duration;
int no_of students;

j3

Variable declaration for structure course :-

RCM

The rules for structure initialization are similar to the rules for array initialization. The initializers are enclosed in
braces and separated by commas. They must match their corresponding types in the structure definition.

void main()

{

struct course c1,c2,c3;

Initialization structures :

The syntax is shown below:
struct tag_name variable = {valuel, value2,... value-n};

Structure initialization can be done in anyone of the following ways:

CSE,NRCM P.REVATHY,ASSISTANT PROFESSOR Page 83

Programming for problem solving[CS1103ES]

(i) Initialization along with Structure definition:-

Consider the structure definition for student with three fields name, roll number and average marks. The initialization of
variable can be done as shown below,

struct student

{

char name [5];

int roll_number;

float avg;

} s1= {“Ravi”, 10, 67.8};

The various members of the structure have the following values.

R a v i |\0O |1 0 6 P 2 8

Figure 5.2 Initial Value of S1

(ii) Initialization during Structuremtion:‘ '
Consider the structure definitimdent with three fiel , roll number and
variable can be done as shown be l
:[{ypedef struct SAMPLE sam] = { - ——

int x;

inty;

float t;

char u;

} SAMPLE;

wh”

'marks. The initialization of

SAMPLE sam2={ 7.3 }:

Filled with
floatzero

Filledwith
null (407

The figure shows two €
fields are initialized. As
assigned null values, zero

at happens when not all
ructure elements will be
and strings.

Example: Construct a s
Develop a program to

Df joining and salary.

struct personal

{
char name[20]; int day;
char month[10]; int year;
float salary;

3

void main()

{

struct personal person = { “RAMU”, 10 JUNE 1998, 20000};

CSE,NRCM P.REVATHY,ASSISTANT PROFESSOR Page 84

Programming for problem solving[CS1103ES]

printf(“Output values are:\n”);
printf(““%s%d%s%d%f”,person.name,person.day,person.month,person.year,person.salary);

¥
Output:- RAMU 10 JUNE 1998 20000

Access the data for structure variables using member operator(.)

We know that variables can be accessed and manipulated using expressions and operators. On the similar lines,
the structure members can be accessed and manipulated. The members of a structure can be accessed by using dot(.)
operator.

Structures use a dot (.) operator(also called period operator or member operator) to refer its elements. Before dot,
there must always be a structure variable. After the dot, there must always be a structure element.

The syntax to access the structure members as follows:

structure_variable_name . structure_member_name
name, author, pages and price. Simulate a

Consider the example as shown below,
struct student
the same.

{

char name [5];

int roll_number;

float avg;
Y

struct student s1= {“Ravi”, 10, 67.

The members can be accessed using riable
sl.name --> refers the string ‘b

sl.roll_number --> refers the er 10

sl.avg --> refers avg 67.8

W‘
Example : Create a structure type book, that

program to read this data using member operato

struct book

{
char name[20]; int day;
char month[10]; int :
float salary;
j3
void main()
{
struct book b1;
printf(“Input values are:\n”
scanf(“%s %s %d %f”, bl. 1.auth .p

printf(““Output values are:\n"),
printf(“%s\n %s\n %d\n %f\n”, b1.title, b1.author,bl.pages,bl.price);

}

Output:-
Input values are: C& DATA STRUCTURES KAMTHANE 609 350.00
Output values are:

C& DATA STRUCTURES KAMTHANE

609

350.00

CSE,NRCM P.REVATHY,ASSISTANT PROFESSOR Page 85

Programming for problem solving[CS1103ES]

Array of structures:

An array is a collection of elements of same data type that are stored in contiguous memory locations. A structure is a
collection of members of different data types stored in contiguous memory locations. An array of structures is an array
in which each element is a structure. This concept is very helpful in representing multiple records of a file, where each
record is a collection of dissimilar data items.

As we have an array of integers, we can have an array of structures also. For example, suppose we want to store the
information of class of students, consisting of name, roll_number and marks, A better approach would be to use an array
of structures.

Array of structures can be declared as follows:struct tag_name arrayofstructure[size];

Let™s take an example, to store the information of 3 students, we caj have the following structure definition and

declaration,

struct student)
{

char name[10];

int rno;
float avg;
}1 ")
struct student s[3]; % &
Defines an array called s, whi tains three ele . ments defined to be struct student.
For the student details, array 0 res can be initialize lows,
struct student s[3]={{* ,1,56.7} qr’’,3,8

Ex: An array of structures for structure employee

struct employee emp|[5];

Defines array called emp, : ct student.

For the student details, ar ructur as
struct employee [5] avl s t 00},{4,’rupa”,5000},
{5,”deepa”,27000} }; .

Example :

struct student

{

char name [20];
int rollno;

int marks [5];
}

void main()

{

struct student s1;
int i,sum=0;

CSE,NRCM P.REVATHY,ASSISTANT PROFESSOR Page 86

Programming for problem solving[CS1103ES]

printf(“Enter details of Student — 1 Name , Rollno:”);
scanf(“%s %d”,s1.name,&s1.rollno);

printf(“\n Enter marks of 5 Subjects :”);
for(i=0;i<5;i++)

{

scanf(“%d”,&s1.marks[1]);

sum+=s1.marks[i];

}

Printf(“\n Details of students are : \n Name : %s Roll no : %d \n Marks : ”, s1.name,s1.rollno);
for(i=0;i<5;i++)

printf(*“%d ”,s1.marks[1]);

printf(“\n Total : %d ““,sum;

¥

Ouput :
Enter details of Student — 1 Name , Rollno :

Ravi 201
Enter marks of 5 Subjects :
50 60 70 40 90
Details of students are :
Name : Ravi

Roll no : 201

Marks : 50 60 70 40 90
Total : 310

Example :

Simulate a C program to calculate student-wis three students usingarray of structures.

#include<stdio.h>
struct student

{

char rollno[10];

char name[20]; float su

void main()
{

int i, j, total = 0; struct st
printf("\t\t\t\t Enter 3 st
for(i=0; i<3; i++)
{

printf(*\n Enter Roll nu of %d
gets(s[i].rollno);

printf(" Enter the name:");

gets(s[i].name);

printf(" Enter 3 subjects marks of each student:");
total=0;

for(j=0; j<3; j++)

{

scanf("%d",&s[i].sub[j]);

total = total + s[i].sub[j];

CSE,NRCM P.REVATHY,ASSISTANT PROFESSOR Page 87

Programming for problem solving[CS1103ES]

¥
¥

p r | ntf(' '\ n FhEAIAAAkAAAAIAAAkAAAAAIAAhkArAhhrhhErrhhrhhkiiikiiixix! ') ,

printf("\n\t\t\t Student details:");

p r | ntf(' '\ n FhEAIAAAkAAAAIAAAkAAAAAIAAhkArhhrhhErrhhihhiihkiiixix! ') .

for(i=0; i<n; i++) ’

printf ("\n Student %d:",i+1);
printf ("\n Roll number:%s\n name:%s",s[i].rollno,s[i].name);

printf ("\nTotal marks =%f", s[i].total);
@;ate

¥
k

Example: %‘
Develop a C program using ar f stru

emp-id, name, designation, add alary and

A

plowords with the following fields:

#include<stdio.h>
struct employee
{
int emp_id;
char name[20];
char designation[10];
char address[20];
float salary;
Yemp[3];
void main()
{
int i;
printf("\t\t\t\t Enter 3 employees details™);
for(i=0; i<3; i++)
{
scanf(“%d”,&emp|[i].em
gets(emp[i].name);
gets(emp[i].designation);
gets(emp[i].address);
scanf(“%f”,&emp[i].sala

¥

p ri ntf(' \FFFFF IR KKK KK

printf("\n\t\t\t Employee detalils:");

prl ntf("\n**") .
for(i=0; i<3; i++)

printf(“%d”,emp[i].emp _id);
puts(empli].name);
puts(emp[i].designation);
puts(emp[i].address);
printf(“%f”,emp[i].salary);
}

CSE,NRCM P.REVATHY,ASSISTANT PROFESSOR Page 88

Programming for problem solving[CS1103ES]

Arrays within structure:

It is also possible to declare an array as a member of structure, like declaring ordinary variables. For example to
store marks of a student in three subjects then we can have the following definition of a structure.

struct student

{

char name [5];
int roll_number;

int marks [3];

float avg;

! %
Then the initialization of the array marks done as S:

struct student s1= {“ravi”, 34‘0} 1%

The values of the member marks array are refer
s1.marks [0] --> will refer the 0™ element in the m
sl.marks [1] --> will refer the 1st element in the mar
sl.marks [2] --> will refer the 2ndt element in the mark

Ex: Construct a C program using structure to create a |
author“s name, Title of the book, year of publication, p
struct library lib;

printf(“Input values are:\n”);

scanf(“%d %s %s %d %s%f”, &lib.acc no, lib.author, lib.title, &lib.year pub, lib.name pub, &lib.price);
printf(“Output values are:\n\n”);
printf(“Access number = %d\n Author name = %s\nBook Title = %s\n Year of publication = %d \n Name of publication =
%s\nPrice = %f 7, lib.acc_no, lib.author, lib.title, lib.year pub, lib.name pub, lib.price);
}

catalogue with the following fields: Access number,
“s name, and price.

struct library
{
int acc_no;
char author[20];
char title[10];
int year_pub;
char name_pub[20];
float price;

h

void main()

CSE,NRCM P.REVATHY,ASSISTANT PROFESSOR Page 89

Programming for problem solving[CS1103ES]

Distinguish between Arrays within Structures and Array of Structures with examples :

Arrays within structure:
It is also possible to declare an array as a member of structure, like declaring ordinary variables. For example
to store marks of a student in three subjects then we can have the following definition of a structure.

struct student

{

char name [5];
int roll_number;
int marks [3];
float avg;

}’ o
Then the initialization of the array marks done 55}1 llo

A
sl.marks [2] --> will refer tf‘ement i

ed as WS:
h
the mark
Array of structures:

An array is a collection of elements of same d
structure is a collection of members of different data
structures is an array in which each element is a
multiple records of a file, where each record is a colle

struct student s1= {“ravi”, 34, {60,

The values of the member marks array are r
sl.marks [0] --> will refer the 0™ e ntint

sl.marks [1] --> will refer the 1st element in t

re stored in contiguous memory locations. A
ored in contiguous memory locations. An array of
ure. This concept is very helpful in representing
of dissimilar data items.

Ex:
An array of structures f

struct employee

Let“s take an example,
and declaration,
struct employee

{

int empid; char name[10]; float salary;
Y

struct employee emp[5];

g structure definition

Defines array called emp, which contains five elements. Each element is defined to be of type struct student.

For the student details, array of structures can be initialized as follows, struct employee
emp[5] = {{1,”ramu”25,20000},

CSE,NRCM P.REVATHY,ASSISTANT PROFESSOR Page 90

Programming for problem solving[CS1103ES]

{2,’ravi”,65000},
{3,”tarun”,82000},

{4,’rupa”,5000}, {5,”deepa”,27000} };

Nested Structure (Structure within structure) :

A structure which includes another structure is called nested structure or structure within structure. i.e a structure
can be used as a member of another structure. There are two methods for declaration of nested structures.

(i) The syntax for the nesting of the structure is as follows:
struct tag_namel

{

typel memberl; ‘ g

&
struct tag_name2

{
typel memberl;

The syntax for accessing members of a nes as follows, outer_structure variable
inner_structure_variable.member_name

(ii) The syntax of another

struct structure_nm

{

<data-type> element 1;
<data-type> element 2;

<data-type> element n;
struct structure_nm

{

<data-type> element 1;
<data-type> element 2;

<data-type> element n;
}inner_struct_var;
Jouter_struct_var;

CSE,NRCM P.REVATHY,ASSISTANT PROFESSOR Page 91

Programming for problem solving[CS1103ES]

Example : struct stud_Res

{

int rno;

char nm[50];
char std[10];
struct stud_subyj

char subjnm[30]; int marks;
}subj;
}result;
In above example, the structure stud_Res consists of stud_subj which itself is a structure with two members. Structure
stud_Res is called as ‘outer structure' while stud_subj.is called as 'inner ture.'
The members which are inside the inner structure accessed as f : result.subj.subjnm

result.subj.marks

Program to demonstrate nested structures
#include <stdio.h>

#include <conio.h>
struct stud_Res
{

J
é)
&

int rno; ‘
char std[10];

struct stud_Marks

{

char subj_nm[30];
int subj_mark;
}marks;
}result;
void main()

{

printf("\n\t Ent

printf("\n\t Ent
scanf(*'%s",res
printf("\n\tEnt
scanf(*'%s",res
printf("\n\tEnt
scanf("'%d",&r
printf("\n\n\t R
printf("\n\n\t Standard : %s ,result.std);
printf("\nSubject Code : %s",result. marks subj_nm);
printf("\n\n\t Marks : %d" result.marks.subj_mark);

}

Output:

Enter roll number : 1
Enter standard :Btech
Enter subject code : GR11002

CSE,NRCM P.REVATHY,ASSISTANT PROFESSOR Page 92

Programming for problem solving[CS1103ES]

Enter marks : 63

Roll number :1
Standard :Btech

Subject code : GR11002
Marks : 63

Ex: Design a C program using nested structures to read 3 employees details with the following fields; emp-id, name,
designation, address, da ,hra and calculate gross salary of each employee.

#include<stdio.h>
struct employee

{

int emp_id; char name[20];
char designation[10];

char address[20];

struct salary

{
float da;

float hra;

}sal; .

Yemp[3]; N ‘
void main()

{

inti;

printf("\t\t\t\t Enter 3 employ‘s");
grosssalary = 0;

for(i=0; i<3; i++)

scanf(“%d”,&emp[i].emp _id);
gets(emp[i].name);
gets(empl[i].designation);

gets(emp[i].address);

scanf(“%t”,&emp[i].sal.da);

scanf(“%f”,&empli].sal.hra);
grosssalary = grosssalary,

}

p r | ntf(' '\n************

printf("\n\t\t\t Employee
p r | ntf(' '\n*************
for(i=0; i<3; i++)

{
printf(“%d”,empl[i].emp_
puts(empli].name);
puts(empli].designation);
puts(emp[i].address);
printf(“%f”,emp[i].sal.da);
printf(“%f”,emp[i].sal.hra);
printf(“%f”,grosssalary);

}

}

Structures and Functions:

CSE,NRCM P.REVATHY,ASSISTANT PROFESSOR Page 93

Programming for problem solving[CS1103ES]

Structures as Function arguments — Passing structures to functions:

Pass a structure member as an argument to a function:
Structures are more useful if we are able to pass them to functions and return them.
By passing individual members of structure

This method is to pass each member of the structure as an actual argument of the function call. The actual arguments are
treated independently like ordinary variables. This is the most elementary method and becomes unmanageable and
inefficient when the structure size is large.

Program:

#include<stdio.h>
void main ()

{

float arriers (char *s, int n, float m);
typedef struct emp

char name[15]; int emp_no;
float salary;
}record,;

record el = {"smith",2,20000.25};
el.salary = arriers(el.name,

}

float arriers(char *s, int n, float m)

no,el.salary);

{

m=m + 2000;
printf("\n%s %d %f ",s, n, m);
return m;

by
¥

Output

smith2 ~ 22000.2500

Pass an entire struc

Structures are more usefu
Passing Whole Structure:

This method involves passing a copy of the entire structure to the called function. Any changes to structure members
within the function are not reflected in the original structure. It is therefore, necessary for the function to return the
entire structure back to the calling function.

The general format of sending a copy of a structure to the called function is:

return_type function_name (structure_variable_name);

CSE,NRCM P.REVATHY,ASSISTANT PROFESSOR Page 94

Programming for problem solving[CS1103ES]

The called function takes the following form:

data_type function_name(struct_typetag_name)

return(expression);

The called function must be declared for its type, appropriate to the data type it is expected to return.

The structure variable used as the actual argument and the carresponding formal argument in the called function must be
of the same struct type.The return statement is necessary only when the function is returning some data back to the calling
function. The expression may be any simple variable or structure varia@an expression using simple variables.

When a function returns a structure, it must be as to a structure

functions must be declared in the calling function a riatel
Program:
#include <stdio.h>

#include <string.h>

struct student

t
intid;

ntical type in the calling function. The called

(4

5)
&

§

char name[20]; ‘
float percentage;
Y

void func(struct student record);
int main()

{

struct student record;
record.id=1;
strcpy(record.name, "Raju™);
record.percentage = 86.5;
return O;

}
void func(struct student rec
{ @
printf(" Id is: %d \n", recor
printf(" Name is: %s \n", r nam
printf(" Percentage is: %f \ ord.pe
}
Output:
Idis: 1
Name is: Raju

Percentage is: 86.500000

Function returning a structure:

CSE,NRCM P.REVATHY,ASSISTANT PROFESSOR Page 95

Programming for problem solving[CS1103ES]

#include<stdio.h.>
#include<string.h>

typedef struct

char name [15];

int emp_no;

float salary;

} record;

void main ()

{

record change (record);

record el = {"Smith", 2, 20000.25};

printf ("\nBefore Change %s %d %f",el.name,el.emp_no,el.salary); el = change(el);

printf ("\nAfter Change %s %d %f ",el.name,el.emp_no,el.salary);
}

record change (record e2)

{

strcpy (e2.name,"Jones"); e2.emp_no
ointer to the same structure is known as self-

e2.salary = 9999;
return e2;
}
Output:
Ctures such as lists, queues, stacks and trees.lIt is

(4

Smith 2 20000.25
Jones 16 9999.99

Self referential structure:

A structure definition which includes at |
referential structure.It can be linked together to for
terminated with a NULL pointer .

The syntax for using the self referential structure is as foll

struct tag_name

{
Typel memberl;

Type2 member2;

struct tag_name *next; };
Ex:-

struct node

{

int data;

struct node *next; } nl, n2;

CSE,NRCM P.REVATHY,ASSISTANT PROFESSOR Page 96

Programming for problem solving[CS1103ES]

Unions:

A union is one of the derived data types. Union is a collection of variables referred under a single name. The
syntax, declaration and use of union is similar to the structure but its functionality is different.

The general format or syntax of a union definition is as follows,
Syntax:

union union_name

{
<data-type> element 1;
<data-type> element 2;

Junion_variable;

Example:
union techno
{
int comp_id; char nm; float sal;
}Hch;

A union variable can be declared in the same way n tag_name varl var2...

A union definition and varlabl tion can be do of the foIIoww
union u union u typedef union
{ {
char c; char c; char o
Int i; int i; inti;
float f; float f; float f;
¥; R-H yU;
union u 2; U a;

We cap acceigs varlous members of tr]elH io mentlonedt:y%g D%; a.f and memory organization

€ t union
is shown Be
s N SrGes aSwa
a
101 1002 1003 104 .
a.c
- »

f
i

A
v

Figure 5.8: Memory Organization Union

In the above declaration, the member f requires 4 bytes which is the largest among all the members. Figure 5.8 shows
how all the three variables share the same address. The size of the union here is 4 bytes.

A union creates a storage location that can be used by any one of its members at a time. When a different member is
assigned a new value, the new value supersedes the previous members* value.

Difference between structure and union:-

CSE,NRCM P.REVATHY,ASSISTANT PROFESSOR Page 97

Programming for problem solving[CS1103ES]

Structure Union

(i) Keyword Struct Union

(ii) Definition |A structure is a collection of A union is a collection of
logically related elements, logically related elements,
possibly of different types, possibly of different types,
having a single name. having a single name, shares

single memory location.
(iii) Declaration [truct tag_name union tag_name

{
typel memberl;

typel member2;

struct tag_name var;

(v) Accessing JAccessed by specifying

(iv) Initialization|Same.

ifying
structure_ variable_name.member_ unio ple_name.member_name

Name

(vi)Memory Each member of the structure Memory is allocated by

Allocation occupies ocatio ering

In contig k ns B) e D
| A\, ™

n location

(vii) Size Size of the structure depends Size 1S given by the size of the
on the type of members, adding largest member
size of all the members. sizeof(un_variable)

sizeof (st_var);

(viii) Using Structure members can be same as structure.
Pointers accessed by using dereferencing

operator dot and selection

CSE,NRCM P.REVATHY,ASSISTANT PROFESSOR Page 98

Programming for problem solving[CS1103ES]

operator(->)
\We can have arrays as a member \We can have array as a member
of structures. All members can be of union. Only one member can
accessed at a time. be accessed at a time.

Nesting of structures is possible. same.

It is possible structure may It is possible union may contain
contain union as a member. structure as a member

7

Typedef :

It is a User defined dat
identifier thatwould represents an existing t

ows users define an

Where data-type indicate iven to the data type.

Ex:- typedef int marks;

marks m1, m2, m3;
Note: typedef cannot create a new data type ,it can rename the existing datat?{?e. The main advantage of
typedef’is that we can create meaningful datatype names for increasing the readability of the program.

So, how do you actually declare a typedef? All you must do is provide the old type name followed by the type
that should represent it throughout the code.

Following is the general syntax for using typedef,
typedef <existing_name><alias_name>

CSE,NRCM P.REVATHY,ASSISTANT PROFESSOR Page 99

Programming for problem solving[CS1103ES]

Lets take an example and see how typedef actually works.

typedef unsigned long ulong;

The above statement define a term ulong for an unsigned long datatype. Now this ulong identifier can be used
to define unsigned long type variables.

ulong i, j;

Application of typedef : Note that in C, typedefs can also be used to remove some of the burden associated with
declaring structs

typedef can be used to give a name to user defined data type as well. Lets see its use with structures.

Example:

typedef struct
{
type member; ‘). o
type member2; /
.
type member3; \ “
} type_name; 'y

Here type_name represents the stucture C€Tiniti

N assoc W|th it
a variable of this stucture type.
type_name t1, t2; %
Advantages :
. Typedefs can make code more clea
. Typedefs can make % easier to modify.

typedef vs #define :

IS type_name can be used to declare

o’)

'

various data types similar to typedef but with

#define is a C-directive which is also used to defi
the following differences —

> typedef is limited to giving symbolic names to
for values as well, q., you can define 1 as ONE

> typedef interpretadd
pre-processor.

only where as #define can be used to define alias

are processed by the

Example of typedef :

#include <stdio.h>
#include <string.h>
typedef struct Books {
char title[50];
char author[50];
char subject[100];
int book_id;
} Book;

int main() {

Book book;

CSE,NRCM P.REVATHY,ASSISTANT PROFESSOR Page 100

Programming for problem solving[CS1103ES]

strcpy(book title, "C Programming");

strcpy(book.author, "Nuha Ali");

strcpy(book.subject, "C Programming Tutorial");
book.book_id = 6495407;

printf("Book title : %s\n", book.title);

printf("Book author : %s\n", book.author);
printf("Book subject : %s\n", book.subject);
printf("Book book_id : %d\n", book.book_id);

return O;
}
When the above code is compiled and executed, it produces the following result —
Book title : C Programming
Book author : Nuha Ali
Book subject : C Programming Tuto
Book book_id : 6495407

a')

POINTERS: 4
A Pointer is a constant or vari contains an address t ed to access da
Examples: '
int *ptr;

In ¢ programming every variable keeps two types f varj ddress of variable where it has stored
in the memory.Meaning of following simple pointe
inta=5;

int* ptr; ptr=&a;

Explanation:
About variable —a
Name of variable:a
Value of variable which i
Address where it has stored in memory 1025(assume
About variable —ptr :
Name of variable:ptr
Value of variable which i

5000 1025

As youknow,everyvariableisamemorylocationandeverymemorylocationhasitsaddress defined which can
be accessed using ampersand (&) operator, which denotes an address in memory. Consider the following
example, which prints the address of the variables defined—

#include <stdio.h>

CSE,NRCM P.REVATHY,ASSISTANT PROFESSOR Page 101

Programming for problem solving[CS1103ES]

int main ()

{

intvarl;

char var2[10];

printf("Address of varl variable: %x\n", &varl);

printf("Address of var2 variable: %x\n", &var2);

return 0;

}

When the above code is compiled and executed, it produces the following result —
Address of varl variable: bff5a400 Address of var2 variable: bff5a3f6

What are Pointers?
A pointer is a variable whose value is the address of another variable, i.e., direct address of
thememorylocation.Likeanyvariableorconstant,youmustdeclareapointerbeforeusingit to store any variable address.
The general form of a pointer variable declaration is=type *var-name;
Here,typeisthepointer'sbasetype;itmustbeavalidCd eandvar- name héname of the pointer variable. The
asterisk * used to declare a '\ inter . sam asterisk used for
multiplication.However,inthisstatementt eriskisbel guse&oﬁpmgna eavariabl pointer. Take a look at some
of the valid pointer declarations —
int *ip; /*pointer to an in

double *dp; /* pointer, to a double */
float*fp; /* pointer 10 a float™/
char *ch /* pointer to gcﬂa cter*;
Theactualdatatypeofthevalueof ters,whetherinteger,fl actérorotherwise,

isthesame,alonghexadecimalnu“eprese tsamemoryi .Theonlydifference
data types is the data type of the va t that th i

Benefits of using pointers are:-
Pointers are more efficient in handling arrays an
Pointers can be used to return multiple values from
The use of pointer arrays to character strings results i
Pointers allow C to support dynamic memorymanage
Pointers provide an efficient tool for manipulating
gueues, stacks andtrees.
Pointers reduce leng
g. They increase the execution speed and thus reduce the program.gxecutiontime.

' pointers of different

ia functionarguments.
of data storage space in memory.

o0 o

ic data structures such as structures, linked lists,

=h

How to Use Pointers?

There are a few important
(a) We define a pointer var
(b) assign the address of a
(c)finallyaccessthevalueatt

Thisisdoneby using unary operator * that returns the value of the variable located at the address specified by its
operand. The following example makes use of these operations—

include <stdio.h>

int main ()

{

int var = 20; /* actual variable declaration */

int *ip; /* pointer variable declaration*/

ip = &var; /* store address of var in pointer variable*/

printf("Address of var variable: %x\n", &var); /* address stored in pointer variable */

printf("Address stored in ip variable: %x\n", ip); /* access the value using the pointer */

CSE,NRCM P.REVATHY,ASSISTANT PROFESSOR Page 102

Programming for problem solving[CS1103ES]

printf("'Value of *ip variable: %d\n", *ip);
return O;

¥

When the above code is compiled and executed, it produces the following result — Address of var variable: bffd8b3c
Address stored in ip variable: bffd8b3c Value of *ip variable: 20

Declaration and Initializing a Pointer:

In C, every variable must be declared for its type. Since pointer variable contain addresses that belong to a separate data

type, they must be declared as pointers before we use them.

Declaration of a pointer variable:

The declaration of a pointer variable takes the followingform:data type*pt_name;
This tells the compiler three things about the variable pt_name:
The * tells that the variable pt_name is a peinter variable. g
pt_name needs a memorylocation m' . :)
pt_name points to a variable of typedata_ngg?/ v :é
Ex: int*p;Declares the variabl a pointervariable that points to an i
Initialization of pointe jables:
The process ssigning ’ ddr of avariable to

Ongeapointervariableh endeclaredvgec‘an use assignment operator

LN
Q‘/‘l

*p;
' /lde

r data type.

f
apointervariableisknownasinitialization
to initialize thevariable. ﬁ‘\&
Ex: \15
int quantity ;

claration

p=&quantity; //initialization
We can also combine the initialization wi
int *p=&quantity;

Always ensure that a pointer variable points to
It is also possible to combine the declaration o
initialization of the pointer variable in one step.
int X, *p=&X;

riable, the declaration of pointer variable and the

Example progra

void main()
{
inta=5;

printf ("\nAddres
printf ("\nValue

Addressofa=1444
valu
e ofa=5
The expression &a returns the address of the variable a, which in this case happens to be 1444
.Hence it is printed out using %u, which is a format specified for printing an unsigned integer.
Accessing a variable through its pointer:

Onceapointerhasbeenassignedtheaddressofavariable,toaccessthevalueofthevariable using pointer we use the
operator ‘*’, called ‘value at address’ operator. It gives the value stored at a particular address. The ,,value at
address* operator is also called ‘indirection’ operator (or dereferencingoperator).

CSE,NRCM P.REVATHY,ASSISTANT PROFESSOR Page 103

Programming for problem solving[CS1103ES]

Ex:

Int main()
{
inta=5;

printf ("\nAddress of a = %u", &a);

printf ("\nValue of a = %d", a) ;

printf ("\nValue of a = %d", *(&a));

return 0;

}

Output: The output of the above program would be:
Address of a = 1444 Value of a=5 Valueofa=5

Example : To Demonstrate Working of Pointers
/* Source code to demonstrate, handling of pointers in C program */ #include <stdio.h>

int main() })‘ :J,:)

{ }.3
}h of c:¢ \n",cs C=&¢;

int* pc; int c; c=22; .
printf("Address of c:%u\n",&c)iintf("Va
c); printf("Caontent of pointer pc:

printf("Address of pointer pc:9
printf("Address of pointer pc:%); printf("Caontent of pointer pc

*pc=2;

printf("Address of c:%u\n’ ; printf(*"

} \g}
Pointer Expressions and Pointer Arit

A pointer in ¢ is an*a i i . can performarithmetic
operationsonapointerjustasyouc . i can be used on pointers:
++, --, +, and-
Tounderstandpointerarithmetic,letusconsidertha i i ichpointsto theaddress1000.Assuming32-
bitintegers,letusperformthefollowingarithmeticope T—
ptr++
After the above operation, the ptr will point to the loca
to the next integer location which
location. Thisoperationwillmovethepointertothenextmem
memory location. If ptr points to a character whose a
location 1001 because t I i
Incrementing a Pointer
We prefer using
incremented, unlike the
program increments the
#include <stdio.h>
const int MAX = 3;
int main ()
{
int var[] = {10, 100, 200};
int i, *ptr;
ptr = var; /* let us have array address in pointer */
for (i=0;i<MAX; i++)

", *pc); c=11;
\n",*pc);

because each time ptr is incremented, it will point

4 bytes next to the current
tionwithoutimpacting the actual value at the
is 1000, then the above operation will point to the

iable pointer can be
yointer. The following

printf("Address of var[%d] = %x\n", i, ptr);
printf("Value of var[%d] = %d\n", i, *ptr);
ptr++; /* move to the next location */

¥

return O;

CSE,NRCM P.REVATHY,ASSISTANT PROFESSOR Page 104

Programming for problem solving[CS1103ES]

¥

When the above code is compiled and executed, it produces the following result —
Address of var[0] = bf882b30 Value of var[0] = 10
Address of var[1] = bf882b34 Value of var[1] = 100 Address of var[2] = bf882b38 Value of var[2] = 200

Decrementing a Pointer

The same considerations apply to decrementing a pointer, which decreases its value by the number of bytes of its
data type as shown below —

#include <stdio.h> const int MAX = 3; int main ()

{

int var[] = {10, 100, 200};

int i, *ptr;

/* let us have array address in pointer */

ptr = &var[MAX-1]; for (i = MAX;i> 0;i--)
{

printf("Address of var[%d] = %x\n", i-1, ptr); pri
/* move to the previous location */ ptr--;)

P

s
("Value of var[;?])z %d\n", i-1, *ptr);
~ ‘

}

return O;

}

When the above code is compiled and execute produc e following result —

Address of var[2] = bfedbcd8 f var[2] Address of v bfedb%ﬁ\lalﬁe of var[1] = 100 Address

of var[0] = bfedbcd0 Value of va a
Pointer Comparisons

Pointers may be com‘usmg relational op uch as ==, <, and ’nd p2 point to variables
that are related to each such lements same ar, then p2 can be meaningfully
compared.

The following program modifies the pre crementing the variable pointer so long as

the address to which it points is either less t
is &var[MAX - 1] -
#include <stdio.h> const int MAX = 3; int main

ddress of the last element of the array, which

{

int var[] = {10, 100, 200};
int i, *ptr;

/* let us have addr.

{

printf("Address o
/* point to the pre
i++;

}

return O;

}

When the above code is compiled and executed, it produces the following result — Address of var[0] =
bfdbch20

Value of var[0] = 10

Address of var[1] = bfdbcb24 Value of var[1] = 100 Address of var[2] = bfdbcb28 Value of var[2] = 200
PointerOperations:

C language allows us to add integers to pointers and to subtract integers frompointers
Ex: If p1, p2 are two pointer variables then operations such as p1+4, p2 - 2, p1 - p2 can be performed.

CSE,NRCM P.REVATHY,ASSISTANT PROFESSOR Page 105

Programming for problem solving[CS1103ES]

Pointers can also be compared using relational operators. Ex: p1>p2, p1==p2, p1! =p2 are validoperations.

We should not use pointer constants in division or multiplication. Also, two pointers cannot be added. p1/p2,
pl*p2, pl/3, pl+p2 are invalidoperations.

Pointer increments and scalefactor:-

Letusassumetheaddressofplis1002. Afterusingpl=p1+1,thevaluebecomes 1004 but not 1003.

Thus when we increment a pointer, its values is increased by length of data type that points to. This length is
called scale factor.

PointerExpressions:

Like other variables pointer variables can be used in expressions.
prlandeareproperIydecIaredandinitia|izedpointers,thenthsfolIowingstatementsare valid:

(4

Y=*pl**p2; %
Sum=sum+*p1;

Z=5*-*p2/*pl,;

*p2=*p2+10;

*pl=*pl+*p2;

*pl=*p2-*p1,; -

NOTE: in the third state re is a space betwee * bec symbol /*is considered as
beginning of the comment efore temeni fails. d p2 erly declared and initialized
pointers then, ‘C” allows adding‘integers int iabl

EX:

Int a=5,b=10; ‘

Int *pl,*p2;

pl=&a;

p2=&b;

Now, P1=p1+1=1000+2=1002;

P1=p1+2=1000+(2*2)=1004; P1 1008; P2=p2+2=3000+(2*2)=3004;

P2=p2+6=3000+(2*6)=3012;
Here addition means bytes that pointer data type h
pointer variable.

subtracted number of times that is subtracted to the

C program using
/*program to find the length of a char string */
p++;

= m
¥

#include<conio.h
#include<string.

printf (“the length of the given string is %d”, 1); getch ();
}

Void main ()

{

Char str [20],*p;
Int 1=0;

printf (“enter a string \n”);
scanf (““ % s”, str);

p=str; while(*p!="\0")

{

I++;

CSE,NRCM P.REVATHY,ASSISTANT PROFESSOR Page 106

void pointer:

Null pointer:

Programming for problem solving[CS1103ES]

Pointers can also be declared as void type. Void pointers cannot be dereferenced without
explicittypeconversion.Thisisbecause,beingvoidthecompilercannotdeterminethesizeof
theobjectthatthepointerpointstoo. Thoughvoidpointerdeclarationispossible,voidvariables declaration is not
allowed. Thus, the declaration void P displays an error message. "size of ‘p’ is unknown or zero" after
compilation. C program to declare a void pointer. Assign address of
int,floatandcharvariablestothevoidpointerusingtypecastingmethod.Displaythecontents of variousvariables.

#include<stdio.h>
#include<conio.h>
Voidmain()

{

int p;

float d;

char c;

void *pt;

clrscr();

pt=&p;
(int)pt=10;
printf(*\n p=%d",p);
pt=&d;

*(float *)pt=3.4;
printf("\n d=%f",d);
pt=&c;

*(char *)pt= ‘s’;
printf("\n c=%c",c); getch();
}

O/P:
p=10 d=3.4
c=S

Intheaboveexample,thestatement™(int*)pt=10assi
declaration *(i
type.Thus,assignmentsoffloatandchartypearecarriedout. Thestatements*(int*)pt=10,
*(float *)pt=3.4, = e size

tegervaluel Otopointerpti.e., to variable ‘p’. the

is of integer

type.

A null pointer is a pointer

Some uses of the null point

To initialize a pointer variable when that pointer variable isn’t assigned any valid memory address yet.
To pass a null pointer to a function argument when we don’t want to pass any valid memory address.

To check for null pointer before accessing any pointer variable. So that, we can perform error handling in pointer
related code e.g. dereference pointer variable only if it’s not NULL.

Example program:

#include <stdio.h>
int main() {

CSE,NRCM P.REVATHY,ASSISTANT PROFESSOR Page 107

Programming for problem solving[CS1103ES]

int *p= NULL;//initialize the pointer as null.
printf("The value of pointer is %u",p);
return 0;

¥

o/p: The value of pointer is 0

Pointers to pointers:
A pointer to a pointer is a form of multiple indirection, or a chain of pointers. Normally, a pointer contains the
address of a variable. When we define a pointer to a pointer, the first pointer contains the address of the second
pointer, which points to the location that contains the actual value as shown below.

Pointer Pointer

Variable

Address ———P Address — Value

3 d as SLﬂ his is done by placing an additional asterisk in
S a poin a pointer of type int —

A variable that is a pointer to a pointer m
front of its name. For example, oIIo
int **var;
When a target value is indirect inted to by 3
asterisk operator be applied twice, as is
#include <stdio.h> int m

{

int var; int *ptr;

int **pptr; var = 3000;
/* take the address of
ptr = &var;

/* take the address of ptr using address
pptr = &ptr;

/* take the value using pptr */
printf("Value of var = %d\n", var);
printf("Value available at ptr = %d\n", *ptr);
printf("Value available at **pptr = %d\n", **pptr)
return O;

}

Output:

Value of var = 30
Value available a
Example 2: prog
#include<stdio.h>
#include<conio.h
{

int x=10,*p, **q;
P=&x;

Q=&p;

clrscr();
printf("value of x=%d address of x=%u", X, &X);
printf("through *p value of x=%d address of x=%u",*p, p);
printf(“through **q value of x=%d address of x=%u", **q,*q);
getch();

¥

Output:

ccessing that value requires that the

o')

CSE,NRCM P.REVATHY,ASSISTANT PROFESSOR Page 108

Programming for problem solving[CS1103ES]

Valueofx=10 addressofx=2000
Through*pvalueofx=10addressofx=2000
Through **q value of x=10 address of x=2000

Pointers to Arrays- Pointers and Arrays :

When an array is declared the complier allocates a base address and sufficient amount of storage to contain
all the elements of the array in contiguous memory locations. The base address is the location of the first
element (index 0) of the array .The complier also defines the array name as a constant pointer to the first
element.

Ex:- static int x[5]={1,2,3,4,5};

Suppose the base address of x is 1000 and asmmg that each inte 'ar requires two bytes. The five
elements will be stored as follows. Jg

elements x[0]

Value 1 Y‘C‘\

Address 1000

the name x is defined as a ‘) rst element, x[0], 'fore the value x is
1000, the location where x[0] ed. T

x=&x[0]=1000;
If we declare p as an integer pointer, then we
assignment

x[4]

to the array x by the following

p=x;which is equivalent to p=&x[0];
Now we can access every value of x using p++ to mo
between p and x is shown below

p=&x[0]=1000

one element to another. The relationship

Note:- address of an ele
Address of x[n] = base a

Eg:- int x[5]; x=1000;

Address of x[3]= base ad
1000+(3*2)
1000+6 =1006

Ex:- float avg[20]; avg=2000;

Address of avg [6]=2000+(6*scale factor of float) =2000+6*4

CSE,NRCM P.REVATHY,ASSISTANT PROFESSOR Page 109

Programming for problem solving[CS1103ES]

=2000+24 =2024.
Ex:- char str [20]; str =2050;

Address of str[10]=2050+(10*1)
=2050+10

=2060.

Note2:- when handling arrays, of using array indexing we can use pointers to access elements. Like *(p+3)

given the value of x[3]

[3
The pointer accessing method is faster than thé @rray indexing. AT
'
A

. N
Accessing elements of an array:-
/*Program to access elements of a one nsional arr
‘ .')

void main()

{
int arr[5]={10,20,30,40,50}; int p=0;

printf(*\n value@ arr[i] is a arr+p)| *(p+arr) | p
for(p=0;p<5;p++)

{

printf(*\n value of arr[%d] is:",p);

printf(" %d | "arr[p]);
printf(" %d | ", *(arr+p));
printf(" %d | ", *(p+arr));
printf(" %d | ",p[arr]);
printf("address of arr[%d]=%u\n",p,(arr+p));
}
}

output:
value@ arr[i] is arr[p]) *(

#include<stdio.h>
ocated @address W

value of arr[0] is: 10

value of arr[1] is: 20

value of arr[2] is: 30

value of arr[3] is: 40

value of arr[4] is: 50 | 50 | 50 | 50 |address of arr[4]=3713876624
Pointers to two dimensional Arrays:

Pointers to two-dimensional arrays:-
Pointer can also be used to manipulate two-dimensional arrays.Just like how X[i] is represented by

*(x+i) or *(p+i), similar, any element in a 2-d array can be represented by the pointer as follows.
((ati)+j) or*(*(pti)tj)
The base address of the array a is &a[0][0] and starting from this address the complier allocates contiguous
space for all the element row — wise .

CSE,NRCM P.REVATHY,ASSISTANT PROFESSOR Page 110

Programming for problem solving[CS1103ES]

I,e the first element of the second row is placed immediately after the last element of the first row and so on
Ex:- suppose we declare an array as follows.
int a[3][4]={{1,2,3,,4},{5,6,7,8},{9,10,11,12}};
The elements of a will be stored as shown below.
rowl row 2 row 3

-
«®

A

A 4
A 4

<
»
i L

Base address =&a[0][0]
If we declare p as int pointer with the intial address &a[0][0] then a[i][]j] is equivalent to *(p+4 x i+j). You
may notice if we increment ,,i* by 1, the p is incremented by 4, the size of each row. Then the element
a[2][3] is given by *(p+2 x 4+3) =*(p+11).
Note:This is the reason why when a two —dim nal array is d d we must specify the size of the each
row so that the complier can determine the cor torage at ma

Program: ‘
/* accessing elements of 2 d array usin nter*/

#include<stdio.h>

void main()

{

int z[3][3]={{1,2,3},{4,5,6},{7,8,9}}

'J

int i, j; ‘
int *p;

p=&z[0][0];

for(i=0;i<3;i++)

{

for(j=0;j<3;j++)

{

printf("\n %d\ti=%d j=%d\t%d",*(p+i*3+j),i,j,* (*(z+i)
}

}
for(i=0;i<9;i++)

printf("\n\t%d",*(p+i));

}

output: .
1 =0 j=0 1
2 =0 j=1 2
3 =0 j=2 3
4 =1 j=0 4
5 =1 j=1 5
6 =1 j=2 6
? =2 j=0 ?
8 =2 j=1 8
9 SZeZ 9

(W BN [T Y N N S S A S A A A A SO A A

CSE,NRCM P.REVATHY,ASSISTANT PROFESSOR Page 111

Programming for problem solving[CS1103ES]

Pointers to character strings with an example program:

String is an array of characters terminated with a null character. We can also use pointer to access the
individual characters in a string .this is illustrated as below.
Note: In "¢’ a constant character string always represents a pointer to that string and the following
statement is valid

char *name;

name = “delhi”;
these statements will declare name as a pointer to a character and assign to name the constant character
string “Delhi”
This type of declarations is not valid for character string

Like:- char name [20];
name ="delhi” ;//invalid

Program:

[* pointers and characters strings*/
/llength of string using pointers
#include<stdio.h> ‘

#include<conio.h>
void main() %
{
int length=0; char *name,*c‘

name="Dennis Ritchie";
cptr=name; //assigning one pointer to anothe
printf("\n ADDRESS OF POINTERS: name=%

puts("\n entered string is:");

puts(hame);
cptr=name;
while(*cptr!=\0") //is true untill end of str is reached

{
printf("\n\t%c is @ %u",*
cptr++; //when while loo

}

length=cptr-name; //end

/li.e. length of str;

printf("\n Length of stri
}

OQutput:

CSE,NRCM P.REVATHY,ASSISTANT PROFESSOR Page 112

Programming for problem solving[CS1103ES]

ﬂDDRESS OF POIMNTERS :: noamc=17C cptr =176
A =tx diwwg A==
Denmi= Ritochic

o -
— =
n
v

E R
171
1 7=
1 7=
17
1 7=
17
E
E]
E
ER:-To]
181
18=
18=
Length of =txivg i

=
=
=
=
=
=
=
=
=
=
=
=
=
=

Pointer to table of string:-

One important use of pointers is in handling of a table of strings.
Consider the following array string :

char name [3][25]; » g4
Here name containing 3 names, each with a maxm‘lum length of 25 characters and total storage requirement
for the name table is 75 bytes AN 7/

ill be of equal length instead o
trmg of varying length.

appleEas
oId III the

length ed “ragged arrays™ and are better

We know that rarely the individual s mg each row a fixed number
of characters we can make it a pointer

Eg:- char *name[3]={“apple” ,“banan

This declaration allocates only 21 bytes suffi
» To print all the 3 names use the-follow
for (i=0; <=2l

printf(“%s/% [i]);
» To access the jth characterin the it

*(name [i]+])
Note:- The character arrays with the rows of v

handled pointers.

Pointer Arrays (Array of Pointers):
We have array of different primitive data types su
for(k=0;k<3;k++)

pointers i.e. collection
ap[k]=al+k;

printf(“\n address element\n”);
for(k=0;k<3;k++)

{

printf(“\t %u”,ap[k]);
printf(“\t %7d\n”,*(ap[k]));

¥
k

int, float, char etc. Similarly C supports array off

Example:

void main()

{

int *ap[3];

int al[3]={10,20,30};
int k;

CSE,NRCM P.REVATHY,ASSISTANT PROFESSOR Page 113

Programming for problem solving[CS1103ES]

Output:

Address Element
4060 10

4062 20

4064 30

In the above program, the addresses of elements are stored in an array and thus it represents array of pointers.

A two-dimensional array can be represented using pointer to an array.But, a two-dimensional array can be
expressed in terms of array of pointers also. The conventional array definition is,

data_type array name [expl] [exp2];

Using array of pointers, a two-dimensional array can be defined as,

data_type *array_name [exp1]; %; ':)

.
Where, . .' i AJ
)
- data_type refers to the data typgOf the aPﬁaj/. ’ /

- array_name is the name of th
- expl is the maximum number

(

ments in th ro

Note that exp2 is not used whil ining arr
rows and 4 columns as shown be

int p[3][4]={{10,20,30,40%},{50,60, 70,80} {25,

ointers. Cons two-di {QITSIJHM vector initialized with 3

v‘(can be stored col

The elements of the matrix p ed in ory ro e also) as shown in Fig.
-— Row 0 >< Ro «1 Row 2 >
10 20 | 30 [40 [50 . 25 35 | 45 55

Using array of pointers we can declare p as,
Fig: Two-Dimensional Arrav

int *p[3];

Here, p is an array of pointers. p[O] gives the address
and p[2] gives the addres

first row, p[1] gives the address of the second row

element in 0th row and and 15 column and so

on. In general,

- Address of ith ro

- Address of an ite
" The element in i

len ator * by specifying,
*(pliT+1)

Pointers to structures:

We have pointers pointing to int, float, arrays etc., We also have pointers pointing to structures. They are called
as structure pointers.

To access the members of a structure using pointers we need to perform The following
operations:

CSE,NRCM P.REVATHY,ASSISTANT PROFESSOR Page 114

Programming for problem solving[CS1103ES]

1 Declare the structure variable
2 Declare a pointer to a structure
3 Assign address of structure variable to pointer

4 Access members of structure using (.) operator or using (->)member selection operator or arrow
operator.

Syntax:

struct tagname

{

datatype member1; % @
datatype member2; \ ’
struct taganme var; l ‘ ;

struct tagname *ptr;

ptr=*var;

to access the members

(*ptr).memberl; or ptr->memberl;

ee ee

The parentheses around * edence than the

operator ,,**

Example:

struct student .
{

int rno;

char name[20];

}.

struct student sl; struct student *ptr;
ptr=&s1;

to access (*ptr).rno; (*ptr).name;

(or)

ptr->rno; ptr->name;

Ex: Program to read and display student details using pointers to structures
struct student

{

CSE,NRCM P.REVATHY,ASSISTANT PROFESSOR Page 115

Programming for problem solving[CS1103ES]

int HTNO;

char NAME[20];
float AVG,;

b
void main()

{

struct student s1; struct student *ptr; ptr=&s1,;

printf(“Enter student details”);

scanf(“%d%s%f”,&ptr>HTNO, ptr->NAME, &ptr->AVG);
printf(“HTNO=%d”,ptr->HTNO); printf(“ NAME=%s",ptr>NAME);
printf(“AVERAGE MARKS=%f",ptr->AVG);

¥

Pointers and Functions :

R . f

: . -
Pointers as Function ArgumeRts. \ A '
sses are passed ual argumennts by the calling
S

Pointers can act as function argu when addr

function, in the called function the alargume t be p@in

When we pass addresses to a ion, the p eter receiving t dresses should bepointers. The process
of calling a function using poin ass t ess of varia kno “call by reference”. The

function which is called by refere nch of t iable in the call.

Example :-
void main()
{

int x;

x=50;
change(&x); /* call by reference or address */
printf(“%d\n”,x);
}

change(int *p)

{
*p=*p+10;

When the function cha
change (). Inside chang
X. The statement,

calle s sed into the function
ria address of the variable

*p =*p +10;

Means —add 10 to the value stored at the address pl. Since p represents the address of x, the value of x is
changed from 20 to 30. Thus the output of the program will be 30, not 20.

Thus, call by reference provides a mechanism by which the function can change the stored values in the
calling function.

Pointers as Functions return type:

CSE,NRCM P.REVATHY,ASSISTANT PROFESSOR Page 116

Programming for problem solving[CS1103ES]

Functions Returning Pointers:

A function can return an address through a pointer.Functions return indirectly the values using pointers. The
return type of function can be a pointer of type int , float ,char ,struct etc.

Example :

#include<stdio.h>

int * smallest(int * , int*);
void main()

{

int a,b,*s;

printf(“Enter a,b values “);
scanf(“%d%d”,&a,&b);
s=smallest(&a,&b);
printf(“‘smallest no. is %d”,*

¥

int * smallest(int *a, int *b)

{

if(*a<*b)
return a;
else

return b;

¥

In this example, “return a” implies the addr
function return type should be pointer.

alue .So in order to hold the address, the

Pointers to function — Function Pointer :

A function, like a varia e possible to declare a

pointer to a function, w

satyp
then

A pointer to a function
type (*f

This tells the complier that fptr is a pointer to a function which returns type value the parentheses around *fptr
IS necessary.

Because type *gptr(); would declare gptr as a function returning a pointer to type.

We can make a function pointer to point to a specific function by simply assigning the name of the function
to the pointer.

Eg: double mul(int,int);

CSE,NRCM P.REVATHY,ASSISTANT PROFESSOR Page 117

Programming for problem solving[CS1103ES]

double (*p1)();
pl=mul();

It declares pl as a pointer to a function and mul as a function and then make pl to point to the
function mul.
To call the function mul we now use the pointer p1 with the list of parameters.

i,e (*pl)(x,y); /Hunction call equivalent to mul(x,y);
r ‘

Program:

double mul(int ,int);

void main()

{

int x,y;

double (*p1)();

double res;
pl=mul;

printf("\n enter two numbers

scanf("%d %d",&x,&Y);

res=(*p1)(x,y);

printf(*\n The Product of X %d and Y=%d is %I

¥

double mul(int a,int b)

{

double val; val=a*b;
return(val);

¥

Qutput: using pointers to function
enter two numbers:Z2Z2 7

l

The Product of X=2Z and Y=7 is res=154.000000_

CSE,NRCM P.REVATHY,ASSISTANT PROFESSOR Page 118

Programming for problem solving[CS1103ES]

Preprocessor: Commonly us s like Include, define,
undef, if, ifdef, ifndef Files: Te i reating and Reading and
writing text and binary files, App isting files, Writing and

reading structures using binary files, ccess using fseek, ftell
andrewind functions.

Preprocessors:

ilation process.In
they instruct compiler to do required pre-
rocessor commands
eprocessor directive

The C Preproce!
simplistic terms, a C Preprocessor is just a text substitution tool
processing before actua
begin with a pound sy
should begin in first col
Invoked automatically
0 2nd pass: invokes co
Manually invoke C pre
This section lists Three

1.1 File Inclusion (#include):

1.1 #include: Inserts a particular header fromanotherfile

Eg: #include <stdio.h>#include"myheader.h"

These directives tell the CPP to get stdio.h from System

Libraries and add the text to the current

source file. The next line tells CPP to get myheader.h from the local
directory and add the content to the current source file.

Fig1.1 Execution process Diagram

CSE,NRCM P.REVATHY,ASSISTANT PROFESSOR Page 119

Programming for problem solving[CS1103ES]

Conditional compilation (#if, #ifdef, #ifndef, #elif, #else #endif):
#if:

The #if directive tests an expression. This expression can be of any form used in a C program, with
virtually any operators, except that it can include only integer constant values No variables, or function calls are
permitted, nor are floating point, character or string constants. The #if directive is true, if the expression evaluates
to true (nonzero). Any undefined preprocessor symbol used in the #if expression is treated as
if it has the value [1. Using a symbol that is defined with no value does not work with
all preprocessors, and an attempt to do so might result in an error.

Eg:

#include <stdio.h>
#define WINDOWS 1
int main()

{

#if WINDOWS
printf(""Windows");
#endif

return O;

}

Here is the output of the execu

.)
#ifdef:
Returns true if this macro |s@

Eg:

#ifdef DEBUG
/* Your debugging statement enter here * / #endif
This tells the CPP to do the process the statements en
This is useful if you pass the -DDEBUG flag to gcc co
This will define DEBUG, so you can turn debugging on
#ifndef: Returns true if this macro is notdefined
Eg:

#ifndef MESSAGE
#define MESSAGE "You wish!" #endif
This tells the CPP to de
Fewother

#else: The alternative fo
#elif: #else an #if in on
#endif: Ends preprocess

G is defined.
e time of compilation.
on the fly during compilation.

Macros (#define, #und
#define: Substitutes a preprocessormacro

eg: #define MAX_ARRAY_LENGTH 20. This directive tells the CPP to replace instances of
MAX_ARRAY_LENGTH with 20. Use #define for constants to increase readability.

#undef: Undefines a preprocessor macro Eg: #undefFILE_SIZE

#define FILE_SIZE 42

This tells the CPP to undefine existing FILE_SIZE and define it as 42.

#error: Prints error message onstderr

#pragma: Issues special commands to the compiler, using a standardizedmethod

Preprocessors Examples Predefined Macros

CSE,NRCM P.REVATHY,ASSISTANT PROFESSOR Page 120

Programming for problem solving[CS1103ES]

ANSI C defines a number of macros. Although each one is available for your use in programming,
the predefined macros should not be directly modified.

Macro Description

DATE The current date as a character literal in "MMM DD YYYY"format

TIME___ The current time as a character literal in "HH:MM:SS"format
FILE____ This contains the current filename as a stringliteral.
LINE____ This contains the current line number as a decimalconstant.
STDC___ Defined as 1 when the compiler complies with the ANSIstandard.

Let's try the following example:

#include <stdio.h> m ain()

{
printf("File:%s\n",FILE___);

printf("Date:%s\n",DATE
printf("Tim e:%s\n", TIME
printf("Line:%d\n",LINE__ &

printf("ANSI:%d\n", STDC

} h Y
When the above code in a file com

File :test.c

and exe

Date :Jun 2 2012
Tim e :03:36:24
Line :8

ANSI :1

Preprocessor Ope
The C preprocessor off
Macro Continuation (\)
A macro usually must b
continue a macro that is
#define message_for(a,

Stringize #

The stringize or number-sign operator '#' , when used within a macro definition, converts a macro
parameter into a string constant. This operator may be used only in a macro that has a specified
argument or parameter list. For example:

#include <stdio.h>

#define message_for(a, b) \

printf(#a " and " #b ": We love you!\n") int main(void)

{

message_for(Carole, Debra); return 0;

CSE,NRCM P.REVATHY,ASSISTANT PROFESSOR Page 121

Programming for problem solving[CS1103ES]

}

When the above code is compiled and executed, it produces the following result: Carole and Debra: We love you!
Token Pasting ##

The token-pasting operator ## within a macro definition combines two arguments. It permits two

separate tokens in the macro definition to be joined into a single token. For example: #include <stdio.h>

#define tokenpaster(n)

printf ("token™ #n " = %d", token##n)

int main(void)

{

int token34 = 40;

tokenpaster(34);

return 0;

}

When the above code is compiled and executed, it produces the following result: token34 =40

How it happened, because this example results inithe following actual.eﬁtput from the preprocessor:

printf (“token34 = %d", token34); m

This example shows the concatenation of token##ﬁ
stringize and token-pasting. The defi Operato
The preprocessor defined operator is in constant expressions to determi n identifier is
defined using #define. If the specified fier is defined, value is true zero. If the symbol

is not defined, the value is false zero. The defingd operator i peC|f|e follows: #lnclude <stdio.h>
#if Idefined (MESSAGE) #defthAGE wish!" #endif

/
Tto token34 ang)re we have used both

int m ain(void)

{

printf("Here is the m essage: %s\n", MESSAGE),
} J
When the above code is compl i followinggi@sult: H e m essage: You wish!

Parameterized Macros:
One of the powerful functions of the CPP is the 3 ons using parameterized
macros. For example, we might have some code to p
int square(int x) {

return X * x;

}

We can rewrite above code using a macro as follows: #de
Macros with arguments must be deflned usmg the #defln
Theargument list is encloseekiasg

are not allowed between and macro name and open parenthesis.

For example:

#include <stdio.h>

#define MAX(X,y)

(00> ()? 60) @
int main(void)

{

printf("Max between 20 0is % 0,

return O;

}

When the above code is compiled and executed, it produces the following result: Max between 20 and 10 is 20

quare(x) ((x) * (x))
tive before they can be used.

CREATING YOUR OWN HEADER FILES IN C :

1. #include is to incorporate the predefined header files in to our ¢ programs...
#include<string.h>

CSE,NRCM P.REVATHY,ASSISTANT PROFESSOR Page 122

Programming for problem solving[CS1103ES]

#include<math.h>

CAN WE HAVE OUR OWN HEADER FILES???

YES....

1. It allows the programmers to create their own header files ...

2. #include is also used to include / incorporate user created header files into the programs....

Two ways...

1. #include<stdio.h>> the computer will search for the definitions header files in predefined /
standard..locations

2. #include"myown.h" ---> the computer will search for the definitions header files in the current folder

(own heard files...) i);
/
\‘;

'y
i header filejn C? s B ’
How to write your own header file jo C* £ o/
As we all know that files with .h exte are called header files in C.
These header files generally contain fun

e.g. there is need to include std
So the question arises, is it possi

n declarations which we,gan
Tn@ur Cp m to use functi intf() ingmewogram.
Q;:Sreate own headen £\
o>
i e‘ tions that you can.use in your main

sed in our main C program, like for

The answer to the above is yes.
header files are simply files hich you cand
program or these can be use%vriting large C pr i
i and C preprocessor

n
NOTE: Header files generally n defi ns of d s, fun proto
Below is the short example of creating your own il ing it accordingly.

commands.

Creating myhead.h : Write the below code and then s file as myhead.h or you can give any name but
the extension should be .h indicating its a header file.
/I 1t is not recommended to put function definitions
Il 'in a header file. Ideally
/I function declarations. Purpose of this code Is
/ to only demonstrate wolsimg of hea il
void add(int a, int b)

{

}
void multiply(int a, int b

printf("Added value=9

printf("Multiplied value=%d\n", a * b);

Including the .h file in other program : Now as we need to include stdio.h as #include in order to use printf()
function.

We will also need to include the above header file myhead.h as #include”myhead.h”.

The “” here are used to instructs the preprocessor to look into the present folder and into the standard folder of
all header files if not found in present folder.

So, if you wish to use angular brackets instead of “ “’to include your header file you can save it in the standard
folder of header files otherwise.

CSE,NRCM P.REVATHY,ASSISTANT PROFESSOR Page 123

Programming for problem solving[CS1103ES]

66 9

If you are using ““ ”you need to ensure that the header file you created is saved in the same folder in which you
will save the C file using this header file.

Using the created header file:

/I C program to use the above created header file
#include <stdio.h>

#include "myhead.h"

int main()

add(4, 6);

[*This calls add function written in myhead.h

and therefore no compilation error.*/
multiply(5, 5);
// Same for the multiply function i ead.h
printf("BYE!See you Soon™);
return O;

}
Output:

Added value:10
Multiplied value:25 ‘
BYE! See you Soon

NOTE: The above code compiles successfully
file and saved it in the same folder the above c file
Important Points:

The creation of header files are needed generally while
the function definitions, prototypes etc.In short, Put on

g large C programs so that the modules can share
t is necessary and keep the header file concised.

Example Program:
/Istep -1 : creating own header file
// open a new file
/I define your function / oper
/I save the file with head h
/I compile the file ...igno
I/ run the file ...
#include<stdio.h>

int sum(int x ,int y)

{

return(x+y);

int findbig(int x,int y)
{

if(x>y)

return(x);

else

return(y);

CSE,NRCM P.REVATHY,ASSISTANT PROFESSOR Page 124

Programming for problem solving[CS1103ES]

}

void display()

{

printf("\n HELLO FROM CSE A C E\n");

ks

// write a new program to include the header file created
#include<stdio.h>
#include<conio.h>
#include"cseace.h”
int main()

{

int x=10,y=20,res;
clrscr();

display();

res=sum(x,y); ‘3
printf("sum = %d" res);

printf("\n BIGGER OF %(d and %d =
display();

getch();
return O;

¥

OUTPUT : ‘
HELLO FROM CSE A C E

SUM=30
BIGGER OF 10 and 20 = 30
HELLO FROM CSEACE
File : A file is an external collection of related data t
related data is stored and retrieved whenever necessary
The primary purpose of a file is to keep record of dat
characters which conveymeaning.
Files are stored in auxiliary or secondary storage devices
storage are disks (hard

x,Y,findbig (X,

ord is a group of related fields. Field is agroupof

0 common forms of secondary

Each file ends with an e

A file must first be ope a file is opened an

object (buffer) is createc
It is advantageous to use

When large volume of déte 0 BNIFOrame
When the data need to be stored permanently without getting destroyed when program isterminated.

There are two kinds of files depending upon the format in which data is stored:

1)Text files
2) Binaryfiles

Textfiles:
A text file stores textual information like alphabets, numbers, special symbols, etc.

CSE,NRCM P.REVATHY,ASSISTANT PROFESSOR Page 125

Programming for problem solving[CS1103ES]

actually the ASCIlI code of textual characters its stored in text files. Examples of some text
filesincludec,java,c++sourcecodefilesandfileswith.txtextensions. Thetextfilecontains

the characters in sequence. The computer process the text files sequentially and in forward direction. One can
perform file reading, writing and appending operations. These operations are performed with the help of inbuilt
functions of c.

Binary files:

Textmodeisinefficientforstoringlargeamountofnumericaldatabecauseitoccupieslarge
space.Onlysolutiontothisistoopenafileinbinarymode,whichtakeslesserspacethanthe text mode. These files contain
the set of bytes which stores the information in binary form. One main drawback of binary files is data is stored in
human unreadable form. Examples of binary files are .exe files, video stream files, image files etc. C language
supports binary file operations with the help of various inbuiltfunctions

Modes of opening files :
To store data in a file three things have to be s |ed for operating ‘sys’em Theyinclude

FILENAME:
valid f| e name%lch may cont,m parts,a primary name and an
O
-

A,

xt store
DATASTRUCTURE: j() o /
It is defined as FILE in the library of standar un . Therefore all files are declared as type

It is a string of characters that mak
optional period with the extension.
Progl.c

Myfirst.java Data.t

FILE.FILE is a define data
FILE *fp;

PURPOSE:

It defines the reason for which a file is opened and t e s job. fp=fopen(“filename”,”mode”);

The different modes of opening files are :

“r” (read) mode:

The read mode (r) opens an existing tile for reading.

file marker or pPOINtQLyls iogeds 3 inni i i aracter). The file must

alreadyexist:ifitdoesnote i g \ i de, an erroroccurs.
Syntax:fp=fopen (“filen :

The write mode (w) opé
and all its data is erased
from a file opened in writemode.
Syntax: fp=fopen (“filename”,”w”);

“a” (append) mode:

Theappendmode(a)opensanexistingfileforwritinginsteadofcreatinganewfile.However, the writing starts after the
last character in the existing file ,that is new data is added, or
appended,attheendofthefile.Ifthefiledoesn“texist,newfileiscreatedandopened.Inthis case, the writing will start at the
beginning of thefile.

Syntax: fp=fopen (“filename”,”a”);

exists, it is opened
or if we try to read

CSE,NRCM P.REVATHY,ASSISTANT PROFESSOR Page 126

Programming for problem solving[CS1103ES]

“r+” (read and write) mode:
In this mode file is opened for both reading and writing the data. If a file does not exist then NULL, is returned.
Syntax: fp=fopen (“filename”,”’r+”);

“w+” (read and write) mode:

In this mode file is opened for both writing and reading the data. If a file already exists its contents are erased and
if a file does not exist then a new file is created.

Syntax:fp=fopen (“filename”,”w+");

“at” (append and read) mode:

In this mode file is opened for reading the data as well as data can be added at the end.

Syntax:fp=fopen (“filename”, “a+);
4] (4] |y

File File File
Marker Marker Marker
Read Mode (r, r+) Wnte Mode (w, w+) Append Mode (a, a+

Basic operations on file:

NOTE: To perform operations ry fi oll re a with an extension b like
rb,wb,ab,r+b,w+b,a+b,which has the e men ‘ operationson blnaryflles

Naming afile
Opening afile
Reading data fromfile
Writing data intofile
Closing aFile

In order to perform the basic file operations C s
handling functions available in the C library are as

a number of functions .Some of the Important file

FUNCTLAQA
NAME
fopen()

fclose()

fcloseall

getc()/fgetc() Reads a character from a file

putc()/fputc() Writes a character to a file

fprintf() Writes a set of data values to files

fscanf() Reads a set of data values from files

CSE,NRCM P.REVATHY,ASSISTANT PROFESSOR Page 127

Programming for problem solving[CS1103ES]

getw() Reads an integer from file

putw() Writes an integer to a file

gets() Reads a string from a file

puts() Writes a string to a file

fseek() Sets the position to a desired point in a file
ftell() Gives the current position in the file
rewind() Sets the position to the beginning of the file

g

Anameisgiventothefileusedtost ingofcha ct‘nake up a valid file name for

operating system. It contai n and a ional period)ui)h theextension.

filenam
two parts. imary
Examples: Student.dat, file arks. lin.c Jihe gen
FILE *fp; /ldeclaration
fp=fopen (“filename” ”); [/statement {0"0pen

Here FILE is a data struc efine iles. fp
mode tells the purpose of opening this

Naming and opening a file:

at ing and opening a file is

pe FI%\me is the name of the file.

nter to

Reading data from file:

Input functions used are (Input operations on files

getc(): It is used to read characters from file that h opened for readoperation.

Syntax:

This statement re
c. It returns an en

fscanf();

This function is si
Syntax: fscanf (fp, “control string”, list);

Example fscanf(f1,”%s%d”,str,&num);

The above statement reads string type data and integer type data from file.
getw(); This function reads an integer fromfile.

Syntax: getw (file pointer);

CSE,NRCM P.REVATHY,ASSISTANT PROFESSOR Page 128

Programming for problem solving[CS1103ES]

fgets(): This function reads a string from a file pointed by a file pointer. It also copies the string to a memory|
location referred by anarray.

Syntax: fgets(string,no ofbytes,filepointer);

fread(): This function is used for reading an entire structure block from a givenfile.

Syntax: fread(&struct_name,sizeof(struct_name),1,filepointer);

Writing data to a file:
To write into a file, following C functions are used

putc(): This function writes a character to a file that has been opened in writemode.

ontalnﬁ n ch r varl Ie cint e whose pointer is fp.
tion, S|m|Iar tha ofprintf.
0: It an int to a file. .,
pomte

Syntax: fwrite(&struct_name,sizeof(s

Syntax: putc(c,fp);

This statement writes the chara
fprintf(): This function perform

d. fputs(): This function write

Synatax: fputs(string‘er);

e. fwrite(): This function is used for w

tring i

Closing a file:

A file is closed as soon as all operations on i been completed.Closing a file ensures that
alloutstandinginformationassociatedwiththefileisflushed
tothefilearebroken.Anot
Library function for closing a file is,

fclose(file pointer);
Example: fclose(fp);
Where fp is the file poi

- 1 on error. Once a fil
close all the opened files at once.

I() can be used to

File 1/O functions :
In order to perform the file operations in C we must use the high level 1/O functions which are in C standard 1/0
library. Theyare

getc() and fgetc()functions:

CSE,NRCM P.REVATHY,ASSISTANT PROFESSOR Page 129

Programming for problem solving[CS1103ES]

getc()/fgetc() : It is used to read a character from a file that has been opened in a read mode. It reads a character
from the file whose file pointer is fp. The file pointer moves by one character for every operation of getc(). The
getc() will return an end-of —marker EOF, when an end of file has been reached.

Syntax:

getc(fp);Ex:

char ch; ch=getc(fp);

putc()/fputc() -:
It is used to write a character contained in the character variable to the

file associated with the FILE pointer fp. fputc() also returns an end-of —marker EOF, when an end of file has been
reached.

Syntax: putc(c,fp); Example: char c; putc(c,fp);
Program using fgetc() and fputc():
#include<stdio. h> void main()

{ .
FILE *fp; char ch;

fp=fopen("inputl.txt","w");
printf("\n enter some text hereand press cntrl
fputc(ch,fp); fclose(fp); ("input
while((ch=fgetc(fp))!I=EOF)
putchar(ch);

fclose(fp);
} @

fprintf() andfscanf():

to st); whileffeh= getchar())!; OF)
prmtf(The or text is o \n");
.y
In order to handle a group of mixed dat

fprintf()andfscanf(). Thesetwofunctionsareidenticaltopri

first argument of these functions is a file pointer which s

fprintf(): The general form of fprintf() is
Syntax: fprintf(fp,”’control strmg” hst)
where fp is a file point
output specifications for the items in the list. .
Example:fprintf(fp,”%s
fscanf() : It is used to re
Syntax: fscanf(fp,”
like scanf , fscanf also (: : : of file is reached it
returns the valueEOF.

ously there are two functions that are
nffunctions,exceptthat they work on files. The
s the file to beused.

ol string contains

Program using fscanf()
#include<stdio.h

> void main()

{

int a=22,b; char
s1[20]="Welocme_to_c",s2[20]; float c=12.34,d;
FILE *f3;

f3=fopen("mynew3","w"); fprintf(f3,"%d %s
%f",a,51,c); fclose(f3);

f3=fopen("mynew3","r"); fscanf(f3,"%d %s
%f",&b,s2,&d);

CSE,NRCM P.REVATHY,ASSISTANT PROFESSOR Page 130

Programming for problem solving[CS1103ES]

printf("\n a=%d \t s1=%s \t c=%f \n b=%d \t s2=%s \td=%f",a,s1,c,b,s2,d); fclose(f3);
}

getw() andputw():
The getw() and putw()are integer oriented functions .They are similar to the getc() and putc()
functionsandareusedtoreadandwriteintegervalues. Thesefunctionswouldbeusefulwhen we deal with only integer
data. The general form of getw() and putw()are

Syntax: putw(integer,fp); Syntax: getw(fp);

Program using getw() and putw():

/*Printing odd numbers in odd file and even numbers in even file*/ #include<stdio.h>

void main()

-

int x,i;

FILE *f1,*fo,*fe;//creating a file pointer f1=fo
printf(*\n enter some numbers into file or -1 to

"anil.txt","w"); //opening a file
"); for(i=0;i<20;i++)

{
scanf("'%d",&x)

; if(x==- 1)break;
putw(x,f1); //writing read number into

t file one at
})
fclose(fl); //closing a file op%gvritin 5
.V
printf(""\n OUTPUT DATA\n"); =fope Axt' S 88 //0 nil in"read mode to read data

fo=fopen("odd3f","w"); '

fe=fopen("even3f","w"); wh

tw(fL))1=EOF)

printf("%d\t",x); if(x%2==0) putw(x,fe);
else putw(x,fo);

}

fcloseall(); fo=fopen(odd3f","r");
printf("\n contents of odd file are :\n"); while((x=getw(
printf(" %d\t",x);

fe=fopen("even3f","r");

printf("\n contents of even file are :\n"); while((x=getw(f
printf(*

%d\t",x); fcloseall();
}

fputs() andfgets():

fgets(): It is used to re tring i i i memory location
referred by an array.
Syntax: fgets(string,length,filepointer); Example: fgets(text,50,fpl);
fputs(): It is used to write a string to an opened file pointed by file pointer.

Syntax: fputs(string,filepointer); Example: fputs(text,fp); Program using fgets() andfputs():
#include<stdio.h> voidmain()

{

FILE *fp; charstr[50];

fp=fopen("fputget.txt","r"); printf(*\n the read string is :\n"); fgets(str,50,fp);

puts(str); fclose(fp);

CSE,NRCM P.REVATHY,ASSISTANT PROFESSOR Page 131

Programming for problem solving[CS1103ES]

fp=fopen("fputget.txt","a+"); printf("\n Enter string : \n"); gets(str);
fputs(str,fp); puts(str); fclose(fp);
}

Block or structures read and write:

Large amount of integers or float data require large space on disk in text mode and turns out to be inefficient .For
this we prefer binary mode and the functions used are
fread() andfwrite():

fwrite(): It is used for writing an entire structure block to a given file in binary mode.
Syntax: fwrite(&structure variable sueof(structure variable),1filepointer);
Example: fwrite(&stud,sizeof(stud -

fread(): It is used for reading an entire structur
Syntax: fread(&structure variable,sizeof
Example: fread(&emp,si emp),1,

Program using fread() and fwrite
#include<stdio.h>

struct player

{

char pname[30]; intage

int runs; };
void main()
{

struct player p1,p2; FILE *f3;
f3=fopen("player.txt","w");
printf("\n Enter details of player name ,age a
scanf(*'%s %d %d",pl.pname,&pl.age,&pl.ru
fwrite(&p1,sizeof(pl),1,f3); fclose(f3); f3=fopen
printf("\nPLAYERNAME:=%s\tAGE:=%d\tRUN
); fclose(f3);

}

Random access t .

pE R

; filush(stdin);

xt","r"); fread(&p2,sizeof(p2),1,f3); fflush(stdout);
", p2.pname,p2.age,p2.runs

At times we needed to ac
can be achieved with the
ftell():-

3 sequentially, which

ftell takes a file pointer a on. This function is

useful in saving the curre
Syntax:n=ftell(fp);

n would give the Relative offset (In bytes) of the current position. This means that already n
bytes have a been read or written

rewind():-
It takes a file pointer and resets the position to the start of the file.

Syntax:rewind(fp);

CSE,NRCM P.REVATHY,ASSISTANT PROFESSOR Page 132

Programming for problem solving[CS1103ES]

n=ftell(fp);

would assign 0 to n because the file position has been set to start of the file by rewind().The first byte in the file is
numbered 0, second as 1, so on. This function helps in reading the file more than once, without having to close and
open thefile.

Whenever a file is opened for reading or writing a rewind is done implicitly.

fseek:- fseek function is used to move the file pointer to a desired location within the file.
Syntax: fseek(fileptr,offset,position);

file pointer is a pointer to the file concerned, offset is a number or variable of type long and position is an integer
number which takes one of the following values. The offset specifies the number of positions(Bytes) to be moved
from the location specified by the position

which can be positive implies moving forward and negative implies moving backwards.

.

SEEKZSET ‘ BE ING OF FILE
SEEK_CUR" ENT POSITION

END -IL
d

o
POSITION VALUE V / CONSTANTAIJ\ MEANING

0

1

2 \g

Example: fseek(fp,10,0) ;

fseek(fp,10,SEEK_SET);// Mnter

10,SEEK_END); // reads from backward dire
When the operation is successful fseek returns
returns -1. Some of the Operations of fseek function

dir«lo bytes. fseek(fp,-

to move a file beyond boundaries fseek

STATEMENT MEANING

fseek(fp,0L,0);

fseek(fp,0L,1);

fseek(fp,0L,2);

fseek(fp,m,0);

fseek(fp,m,1);

fseek(fp,-m,1);

fseek(fp,-m,2); Go backwards by m bytes from the end.(positions the file to the m™
character from the end)

Program on random access to files:

#include<stdio.h>
void main()

{

CSE,NRCM P.REVATHY,ASSISTANT PROFESSOR Page 133

Programming for problem solving[CS1103ES]

FILE *fp;

char ch; fp=fopen("my1.txt","r"); fseek(fp,21,SEEK_SE
T); ch=fgetc(fp);

while(!feof(fp))

{

printf(““%c\t”,ch); printf(‘““%d\n”,ftell(fp
)); ch=fgetc(fp);

}

rewind(fp); printf(“%d\n”, ftell(fp
)); fclose(fp);

¥

Error handling in files:
It is possible that an error may occur duri O operations on g'f'}. Typical error situations include:
Trying to read beyond the end of file mark. Device overflow. -
Trying to use a file that has notggeen opened. ~ .

Trying to perform an operation
Opening a file with an invalid filename. e.

empting tow rite protecte
If we fail to check such rea write err program may e abnormally ‘when an error occurs. An
unchecked error may result in a reln re ter n of the progr. ncorred tput. In C we have two status -

ile, when the |Ie, opened for a type of operations.

inquiry library functions feof and thatc usd t I/ in th
a). feof(): The feof() function can be used to t ndltlon It takes a FILE pointer as its only

argument and returns a no teger value if a of a from the specified fi been read, and returns
zero otherwise. If fp is a poin e that has just ope eading, thgg the st
if(feof(fp)) printf(“End of data”);

would display the message “End of data” on r f fil

ferror(): The ferror() function reports the status of
returns a nonzero integer if an error has been detecte
Thestatement

if(ferror(fp)!=0)

. It also takes a file pointer as its argument and
oint, during processing. It returns zero otherwise.

printf(“an error has occurred\n”);

returned. If the file
used to test whether

fp==null: We know th
cannot be opened for so
a file has been opened o
Example

if(fp==NULL)
printf(“File could not be opened.\n”);

perror(): It is a standard library function which prints the error messages specified by the compiler. Forexample:
if(ferror(fp)) perror(filename);

Program for error handling in files:

#include<stdio.h> void main()
{ FILE

CSE,NRCM P.REVATHY,ASSISTANT PROFESSOR Page 134

Programming for problem solving[CS1103ES]

*fp; char ch;
fp=fopen("my1.txt","r"); if(fp==NULL) printf(“\n file cannotbe
opened”); while(!feof(fp))

{

ch=getc(fp); if(ferror(fp))
perror(“problem in file”); else
putchar(ch);

}
fclose(fp);

Introduction to stdin, stdout and stderr (or) Special File Pointers:
When we say Input, it means to feed some data into a program. An input can be given in the form of a file or
from the command line. C programming provi set of built-in fg ons to read the given input and feed it to

the program as per requirement.

When we say Output, it means to digplay some on screen, printer, or in anyafile. C programming provides a
set of built-in functions to output the n the compute[screenas weII as t’ it in text or binaryfiles.

The Standard Files

C programming treats all the ices as files. evices h as t

files and the following three files utom opened whe
keyboard and screen.
There are 3 special FILE *s that are alw efi r

stdout (standard output) an‘(standarderror :

Standard File Fil evice

splay are addr}ssed in the same way as
gram to provide access to the

gram. Tgey are stdin (standard input),

Standard input stdin Keyboard

Standard output stdout Screen

Standard error stderr Your screen

Thefilepointersarethem
from the screen and ho

Standard Input
Standard input is where
is equivalent to the foll
fscanf(stdin, "%d",&val

StandardOutput

Similarly, standard output is exactly where things go when you use printf(). In other words,
printf("Value = %d\n", val):

is equivalent to the following fprintf():

fprintf(stdout, "Value = %d\n", val):

Remember that standard input is normally associated with the keyboard and standard output with the screen,
unless redirection is used.

CSE,NRCM P.REVATHY,ASSISTANT PROFESSOR Page 135

Programming for problem solving[CS1103ES]

Standard Error

Standard error is where you should display error messages. We've already done that above: fprintf(stderr, "Can't
open input file in.list\n");

Standard error is normally associated with the same place as standard output; however, redirecting standard
output does not redirect standard error.

For example,

% a.out > outfile

only redirects stuff going to standard output to the file outfile... anything written to standard error goes to the
screen.

Simulate a ¢ program to read and display the contents of a file?
Program:

#include<stdio. h>
void main()

{

FILE*f1;

char ch;

fl=fopen("data.txt","w");

printf("\n enter some text here and press top:\n"

while((ch=getchar())!=E

fputc(ch,fl);
fclose(fl);

printf(“\n the contents of file are \n:”);
f1 = fopen(“data.txt”,
while((ch = fgetc(f1)) !)

putchar(ch);
fclose(fl);

}

Develop a ¢ program to copy the contents of on another?

Program:

#include<stdio.h>
void main()
{

FILE *f1,*f2;
char ch;
fl=

while((ch=getcha
fputc(ch,fl);
fclose(fl);
fl=fopen("mynew2.txt","r");
f2=fopen("dupmynew?2.txt","w");
while((ch=getc(f1))!=EOF)

putc(ch,f2);

fcloseall();

printf(“\n the copied file contents are :”);
2 = fopen(“dupmynew?2.txt”,"r");
while((ch = fgetc(f2)) 1= EOF)

CSE,NRCM P.REVATHY,ASSISTANT PROFESSOR Page 136

Programming for problem solving[CS1103ES]

putchar(ch);
fclose(f2);

¥

Write a ¢ program to merge two files into a third file?(Or)

Develop a ¢ program for the following .there are two input files named “first.dat” and “second.dat” .The files are
to be merged. That is,copy the contents of first.dat andthen second.dat to a new file named result.dat?

Program:

#include<stdio.h>
#include<stdlib.h>
int main()

{

FILE *fs1, *fs2, *ft;

char ch, file1[20], file2[20], file3[20];
printf("Enter name of first file\n");

gets(filel);

printf("Enter name of second fi

gets(file2);

/

printf("Enter name of file which will stor€eontents files\n'

gets(file3); -7
fs1=fopen(filel,"w"); &
printf("\n enter some text int here or op :\n
while((ch=getchar())!I=EOF)
fputc(ch,fsl); i
fclose(fsl);

fs2=fopen(file2,"w");
printf("\n enter some text into file2 here a
while((ch=getchar())!I=EOF)
fputc(ch,fs2);

fclose(fs2);

fs1 =fopen(filel,"r");

fs2= fopen(file2,"r");

if(fs1 == NULL || fs2 == NULL)

op :\n");

perror("Error "); exit(1);
}

ft = fopen(file3,"
while((ch = fget

fputc(ch,ft);
while((ch = fget
fputc(ch,ft);
printf("Two files
fcloseall();

ft = fopen(file3,"r");
printf(“\n the merged file contents are:”);
while((ch = fgetc(fsl)) 1= EOF)
putchar(ch);
fclose(f t);
return O;

¥

Write a C program to append the contents of a file ?

CSE,NRCM P.REVATHY,ASSISTANT PROFESSOR Page 137

Programming for problem solving[CS1103ES]

Program:

#include<stdio.h>
void main()

{

FILE *fpl,

char ch;

fpl=fopen("sunday.txt","w");

printf(*\n Enter some Text into file :\n");
while((ch=getchar())!="")

fputc(ch,fpl);

fclose(fpl);

fpl=fopen("sunday.txt","a+"); //to append
printf(*\n Enter some MORE Text into file:\n");

while((ch=getchar())!="")

fputc(ch,fpl);

rewind(fpl);

printf(*\n The complete Text inglile is:\n");

while((ch=fgetc(fp1))!=EOF)
putchar(ch);
fclose(fpl);

} h
Construct a ¢ program to display th rse th nts

Program:
#include<stdio.h> ‘
#include<stdlib.h>

int main()

{
FILE*fpl;
char ch;
int x;
fpl=fopen("anyl.txt","w");
printf("\n Enter some text into file:\n");
while((ch=getchar())!I=EOF)
fputc(ch,fpl);
fclose(fpl);
fpl=fopen("anyl.
if(fpl==NULL)

printf("\n cannot
exit(1);

}

fseek(fpl,- 1L,2);
x=ftell(fpl);
printf("\n Th text in the file in reverse order is : \n");
while(x>=0)

{

ch=fgetc(fpl);

printf(%c",ch);

X--

fseek(fp1,x,0);

}

fclose(fpl);

CSE,NRCM P.REVATHY,ASSISTANT PROFESSOR Page 138

Programming for problem solving[CS1103ES]

Command line arguments :

Command line argument is the parameter supplied to a program when the program is invoked. This
parameter may represent a file name the program should process. For example, if we want to execute a program
to copy the contents of a file named X_FILE to another one name Y_FILE then we may use a command line like

C:>program X_FILE Y_FILE

Program is the file name where the executable code of the program is stored. This eliminates the need for
the program to request the user to enter the file names during execution. The ,,main” function can take two
arguments called arg argv and information
containedinthecommandlineispassedontotheprog othesearguments n,,main‘ is called up by thesystem.

4
t vector represe

umber of argugen the command line. The size of

line arguman}, we must declare the

The variable argv is an argu Its an of char

command line arguments.

ers pointers that point to the

The argc is an argument counter counts the n

this array is equal to the value c. In or
,main“ function and its paramete OWS:
main(argc,argv) int argc;

char *argv][];

Generally argv[Q] represents the program name.

Example:- A program to copy the contents of one another using command line

arguments.

#include<stdio.h>
#include<stdlib.h
void main(int arg
{

FILE *ft,*fs; /* fi
int c=0;
if(argc!=3)
Printf(“\n insuffic gument;
fs=fopen(argv[1],’r”);
ft=fopen(argv(2],”w”);

if (fs==NULL)

é:)rintf(“\nsource file opening error”); exit(1) ;
i}f (ft==NULL)

I{}):rintf(“ target file openingerror”); exit(1) ;

CSE,NRCM P.REVATHY,ASSISTANT PROFESSOR Page 139

Programming for problem solving[CS1103ES]

while(!feof(fs))

{
fputc(fgetc(fs),ft);
C++;

}

printf(“\n bytes copied from %s file to %s file =%d”, argv[1], argv[2], ¢);
c=fcloseall(); /*closing all files*/

printf(“files closed=%d”,c);

¥

Simulate a ¢ program to add two numbers using command line arguments?
Program:
#include<stdio.h>
int main(int argc, char *argv[])
{
int X, sum=0;
printf(*\n Number of argument
printf(*\n The agruments are:");
for(x=0;x<argc;x++)

:%d",ar

{

printf(*\n agrv[%d]z%s

if(x<2)

continue;

sum= sum+at0|(argv&

}

printf("\n program name rgv[0]
printf("\n name is:%s",argv[1]);
printf("\n sum is:%d",sum);

return(0);
}

Write a C program to write all the members of an arra
the file and display on the screen.
#include <stdio.h>
struct s

uctures to a file using fwrite(). Read the array from

char name[50];
int height;
3

int main()

{

struct s a[5],b[5];
FILE *fptr;

inti;
fptr=fopen(“file.txt","wb");
for(i=0;i<5;++i)

{

fflush(stdin);

printf("Enter name: *");
gets(a[i].name);
printf("Enter height: ");
scanf("%d",&a[i].height);
}

CSE,NRCM P.REVATHY,ASSISTANT PROFESSOR Page 140

Programming for problem solving[CS1103ES]

fwrite(a,sizeof(a),1,fptr);

fclose(fptr);

fptr=fopen("file.txt","rb");

fread(b,sizeof(b),1,fptr);

for(i=0;i<5;++i)

{

printf("Name: %s\nHeight: %d",b[i].name,b[i].height);

}
fclose(fptr);

Output:

Enter name:ramu
Enter height:156
Enter name:sita
Enter height:140
Enter name:ravi
Enter height:172
Enter name:vijay
Enter height:167

Enter name:raju | g

Enter height:148 Cl
Name:ramu

Height:156 ‘

(4

Name:sita
Height:140
Name:ravi
Height:172
Name:vijay
Height:167
Name:raju
Height:148

Enumertaion Datatype :

Another user-defined dat

Syntax: enumidentifier

ave one of the values
) constants.

Where identifier is user
enclosed within the brac
Ex:- enum identifier v1

vl=value3; v2=v. .

Ex:-enum day {Monday,Tuesday............. sunday}; enum day
week-f,week-end

Week-f = Monday

(or)
enum day{Monday...Sunday}week-f, week-end;

CSE,NRCM P.REVATHY,ASSISTANT PROFESSOR Page 141

Programming for problem solving[CS1103ES]

EXAMPLE:

/I An example program to demonstrate working of enum in C

/l Enum is used to assign names to the integral constants

/I enum statrts its values from O (if not oinitialized) and every next value is 1 + its previous value

#include<stdio.h>

enum week{Mon, Tue, Wed, Thur=6, Fri, Sat, Sun};

int main()

{
enum week day; // variables of type enum and can assing the values
day = Wed,
printf(*\n Mon=%d",Mon);
printf("\n Wed= %d",day); // assigning to an onject of type enum
printf("\n Fri=%d",Fri);
printf("\n Sun=%d",Sun);

return O; % é
}
Mon=0
Wed= 2 \
Fri=7
Sun=9 ‘ 5’)

t value i its prﬁue

EXAMPLE:
/I An example program to demonstrate working o mi
/l Enum is used to assign na integral constants
/I enum statrts its values from oinitialiged) and e
#include<stdio.h>
enum week{Mon=1, Tue, Wed, Thur, Fri, Sat,
int main()

{

enum week day; // variables of type enum and can ass
day = Wed,;

for(day=Mon;day<=Sun;day++) {
printf("\n Day = %d",day);
}

return 0; }

Day =1
Day =2
Day =3
Day =4
Day =5
Day =6
Day =7

Interesting facts about initialization of enum:

1. Two enum names can have same value. For example, in the following C program both ‘Failed’ and ‘Freezed’ have
same value 0.

#include <stdio.h>

enum State {Working = 1, Failed = 0, Freezed = 0};

int main()

printf("%d, %d, %d", Working, Failed, Freezed);
return O;

¥

CSE,NRCM P.REVATHY,ASSISTANT PROFESSOR Page 142

Programming for problem solving[CS1103ES]

Output:
1,0,0

2. If we do not explicitly assign values to enum names, the compiler by default assigns values starting from 0. For
example, in the following C program, sunday gets value 0, monday gets 1, and so on.
#include <stdio.h>
enum day {sunday, monday, tuesday, wednesday, thursday, friday, saturday};
int main()
{
enum day d = thursday;
printf(*The day number stored in d is %d", d);
return 0;
}
Output:
The day number stored in d is 4 ; M

3. We can assign values to some name in any order.’éll una
#include <stdio.h> - A
enum day {sunday = 1, ‘, tuesday = 5, sday, thursday = 1

int main() .

{
printf(*%d %d %d %d %d % unday, , tues ay, we
, return O; \a
Output:
e

ianed ngﬁs get value as value of previous name plus one.

friday, satur

Y, thursgy‘ﬁaﬁay, saturday);
O/

1256101112 ‘

4. All enum constants must be unique in their
enum state {working, failed};

enum result {failed, passed};

int main() {return0; }

ing program fails in compilation.

Output:

Compile Error: 'failed' has a previous declaration as 'state
Enum vs Macro

We can also use macros

macro.

#define Working 0

#define Failed 1

#define Freezed 2

There are multiple advant

a) Enums follow scope ru
enum state {Working, Fail

ailed’ using following

ve integral values.
impler

UN

Functions: Designing structured programs, Declaring a function, Signature of a
function, Parameters and return type of a function, passing parameters to
functions, call by value, Passing arrays to functions, passing pointers to
functions, idea of call by reference, Some C standard functions and libraries

Recursion: Simple programs, such as Finding Factorial, Fibonacci series etc.,
Limitations of Recursivefunctions

Dynamic memory allocation: Allocating and freeing memory, Allocating memory
for arrays of differentdata types

CSE,NRCM P.REVATHY,ASSISTANT PROFESSOR Page 143

Programming for problem solving[CS1103ES]

Functions:

Why Use Functions? (Need for Functions)

The ability to divide a program into abstract, reusable pieces is what makes it possible to write large
programs that actually work right.

The following reasons make functions extremely useful and practically essential:

Enhancesredability
Easy tounderstand.
Allows Codereusability i)G M

Structuredorganization.
. ‘

v
Achieves Modularprogramming ; .‘
\ £ M

Easy identification ofb
Dataabstraction

Reduction of code repeti
Best suited for | rograms

It is used to chec I condi

Designing structured programs

ects anq:_ﬂs J&urns theresult.
Structured programming is a ming technique®in w arger program is divideesimte smaller
Subprogramsto make it easyqstand asy to im the co ble etc,. The structured
programming enables code Teusabilit

Code reusability is a method of writing code es. Structured programming also

o reduces I|n ode

plexp
volving mult

VVVVYVYVVYYVYVY

makes the program easy to understand, improves am, easy to implement and reduces
time.
In C, the structured programming can be designed usin
Functions
Definition:
A function is a bredefined User defined

perform a task. Ever
function, which
programs can defi

C program has at least one

Library functions
User customized

declarations in header functions, to reduce
files complexity of big
programs.

Main Function

In C, the "main" ion i in some

In C, program execution starts from the main () function. The only difference is that the main
function is "called" by the operating system when the user runs the program.

The main function can in-turn may call other functions. When main calls a function, it passes the
execution control to that function. The function returns control to main when a return statement is
executed or when end of function is reached.

Types of Functions:

CSE,NRCM P.REVATHY,ASSISTANT PROFESSOR Page 144

Programming for problem solving[CS1103ES]

Depending on whether a function is defined by the user or already included in C compilers, there are
two types of functions in C programming.

> Standard libraryfunctions
> User defined
functionsStandard

Libraryfunctions:

The standard library functions are built-in functions in C programming.
They handle tasks such as mathematical computations, 1/O processing, string handling etc.
These functions are defined in the headerfi
When we include the header file, eg: #inc
For example: The “printf()” is a standa
(display output on the screen).
» This function isdefinedin “stdi ader file.
o Implementation details known to t

o Inorder to use these functions pr@grammer uld onl

] isavailable.
] their do
] wsReturn type of theflictio

ions are available foruse.
d formatted output to the screen

string.h> these
ary function

O O O O O

Example Program: Example:

include<stdio. b> II'to find length of string

AR et finclude<string.h> | h is header file, strien | f functi
#include<string b> nclude<string h> | string h is header file, strien is name of function
#include<math b> int len=strien(name):

void main() /i name is a string|type argument and len is int value returned

{

miab.

scanf(*“ed’ed” &a &b); Example of some C header files - library functions:

prinff(sum =%ed” a+b);

prntfl Length of string = %d" strien(“INDIA™); , 7 F '

DT Rootof 2= % 47 sart2). $No | HeaderFile Library functions (few)

nntfl S raised to Power of 3 = %d” pow(5,3)); = .

gmﬂ‘(“To lower of B=? oc".tolomr(PB’)); I [sidoh pene scand), gechaf,puthar)

} gt uts fopen, lose)

Output: 2 |stdibh exit])

52 3__|stingh strcat() strepyi) stren) stremp()

Sum=7 (4 |mathh sqrt), pow(), sin(), cos(), exp(, logy), abs{)
Length of string=3 |5 |conioh clrser(), getche()

Root of 2=1.4142 § |cypeh isalpha(), isnum), isalnumi), islower(), isprint).
$ gaised to Power of 3=123 l Ispunct(), isxdigit), tolower(), toupper(
To lower of B=b :

User Defined Functions in C:

CSE,NRCM P.REVATHY,ASSISTANT PROFESSOR Page 145

https://www.programiz.com/c-programming/library-function
https://www.programiz.com/c-programming/c-user-defined-functions
https://www.programiz.com/c-programming/c-user-defined-functions

Programming for problem solving[CS1103ES]

A user can create their own functions for performing any specific task of program are called
user defined functions. To create and use these function we have to know these 3 elements.

A.FunctionDeclaration

B. FunctionDefinition
C. FunctionCall
1. Functiondeclaration

The program or a function that calls a function is referred to as the calling program or calling function. The calling

program should declare any function that.is to be used later in_the program this is known as the function
declaration or function prototype.

2. FunctionDefinition

Thefunctiondefinitionconsistsofthewho riptionandco unction
thatwhatthefunctionisdoingandwi et alled

nputout that. Afupcti
bysimplywritingthenamw&onf edbyth gume’sidethﬁ

Ittells

&

NRCM

CSE,NRCM P.REVATHY,ASSISTANT PROFESSOR Page 146

Programming for problem solving[CS1103ES]

parenthesis. Function definitions have two parts:
Function Header

The first line of code is called function Header.
int sum(int x, inty)

It has three parts
(i) The name of the function i.e.sum

(if) The parameters of the function enclosed inparenthesis

Whatever is written with in { } is ody of the fun

3. FunctionCall
In order to use the function we n%ke it
This is known as the function ¢

Signature of a function:

(iii) Return value type i.e.int
Function Body % E

uired place i

A function’s signature includes the function's d type of its formal parameters.

Syntax: return-type function-name (parameters)

{

declarations
Statements
return value

}

Different Sub parts of
return-type

1 Return Typ
2. Return Typ

function-name

1 It is Unique Name that identifiesfunction.
2. All Variable naming conversions are applicable for declaring valid functionname.

parameters

Comma-separated list of types and names of parameters
Parameter injects external values into function on which function is going tooperate.

CSE,NRCM P.REVATHY,ASSISTANT PROFESSOR Page 147

Programming for problem solving[CS1103ES]

Parameter field is optional.
If no parameter is passed then no need to write this fieldvalue

1. Itis value returned by function up on termination.
2. Function will not return a value if return-type isvoid.

Return Type

Function Name

Local Declaration /

int sum (inta,intb)

{

: {Formal Parameters)
intc;
c=a+b;
return (¢) ;&\

% 1
J

CEatETERES Return Statement
. . S
[It contain Executab;&e(Exe

v ")
sta ts) &
[1 First Line is called as Function r.

Parameter List

1 FunctionHeal d be identical to fu ototype with the ex'fsemicolon

in the parentheses following the

Terminology associated with functions:

Parameter:The term parameter refers to clarat
function name in a function declaration or defi

Example:void sum (int a, int b); // a,b are paramet

Argument:The term argument refers to any expre ithin the parentheses of a function call.

Example: sum(num
Calling function:

Example: Calli
Called function:

function.

Example: // sum is a called function by main function int
sum(numi, num2)

{

return(numl+num?2);

}

———
CSE,NRCM P.REVATHY,ASSISTANT PROFESSOR Page 148

Programming for problem solving[CS1103ES]

Categories of user defined functions in C:

A function depending on whether arguments are present or not and whether a value is returned or not may
belong to any one of the following categories:

i) Functions with no arguments and no return values.
i1) Functions with arguments and no return values.
iii) Functions with arguments and return values.
iv) Functions with no arguments and return values.

(i) Functions with no arguments and no return values:-
When a function has no arguments, it does eceives any d@m calling function. When a function does

not return a value, the calling function does not receive any da m the called function. Functions that don’t

is no data tran

9

jons.That is thel -

g

return a value are known as void etween the calling function and

the called function.

Example oy
#include<stdio.h> % &
void add();

void main()

{
add();

}
void add ()

{
intz,ab;

printf{“enter values of a and b:\n”);
scanf(“%d%d”,&a,&Db);
Z=X+y;

printf ("The sum of two

¥

Output : enter values o
35
The sum of twi

(ii) Functions with argu sand

When a function has arguments data is transferred from calling function to called function. The called function
receives data from calling function and does not send back any values to calling function. Because it doesn’t
have return value.

Example
#include<stdio.h>

CSE,NRCM P.REVATHY,ASSISTANT PROFESSOR Page 149

Programming for problem solving[CS1103ES]

#include <conio.h>

void add(int,int);

void main()

{

int a, b;

printf(“enter values of a and b:\n”);

scanf(“%d%d”,&a,&b);
add(a,b);

void add (int x, int y)
{

int z ; z=x+y;
printf ("The sum of two numbers is :%d",z);

¥

Output : enter values ofa and b :
35

The sum sum of two bersis: 8
(iii) Functions with argumenhwn

alling and called

In this data is transferred be ction receives data from

calling function and called function also se

Example
#include<stdio.h>
#include <conio.h>
int add(int, int);
main()

{

int a,b,c;

printf(“enter values of a
scanf(“%d%d”,&a,&Db);
c=add(a,b);

printf ("The sum of two eras is

}
int add (int x, int y)

{

int z; z=x+y;

return z;

¥

output : enter values of a and b:
e ——

CSE,NRCM P.REVATHY,ASSISTANT PROFESSOR Page 150

Programming for problem solving[CS1103ES]

35
The sum of two numbers is :8
(iv) Function with no arguments and return type:-

When function has no arguments data cannot be transferred to called function. But the calledfunction can send
some return value to the calling function.

Example
#include<stdio.h>

int add();

void main()

{

int c;

c=add();

printf ("The sum of two numbers is
}

int add ()

{

int x,y,z;

printf(“enter values of a and
scanf(“%d%d”,&a,&b); ‘
Z=Xx+Y,;

return z;

¥

Output: enter values of a and b:
35
The sum of two numbers is : 8

Parameter Passing
In C functions exchange i given to a function).
There are two ways to pass erence.

Call by value:
In call by value a co
#include <stdio.h>
void swap(int, int
int main ()
{
int x, y;
printf("Enter the value of x and y\n");
scanf("%d%d",&x,&y);
printf("Before Swapping\nx = %d\ny = %d\n", X, y);
swap(x, y);
printf("After Swapping\nx = %d\ny = %d\n", X, y);
return O;

CSE,NRCM P.REVATHY,ASSISTANT PROFESSOR Page 151

Programming for problem solving[CS1103ES]

void swap(int a, int b)

int temp;
temp = a;
a=Db;
b = temp;
printf(*'Values of a and b is %d%d\n",a,b);
}
Output:

Enter the value of x and y 2
3

Before Swapping

X =2

y=3

Values of a and b is 3 2

After Swapping

X =2

y=3

Call by reference: m ﬁ

In call by reference the location (addres passed to formal arguments hence
guments will alSo re actu arguments.

any change made to
#include <stdio.h>
void swap(int*, int*);

int main()
{
int x,y;
printf("Enter the value of x and y\n");

scanf("%d%d",&x,&y);

printf("Before Swapping\nx = %d\ny =
swap(&x, &y);
printf(‘After Swapping\nx = %d\ny = %d\n", X, y); return 0;

v0|d swap(int *a
|nt temp;
temp = *a;
*a o *b
*b = temp;

Outr_)ut.
Enter the value of x and y 2

3

Before Swapping

X =2

y=3

Values of aand b is 3 2
After Swapping

X Y);

———
CSE,NRCM P.REVATHY,ASSISTANT PROFESSOR Page 152

Programming for problem solving[CS1103ES]

X =3
y=2

Call by Value vs Call by Reference:

S NO CALL BY VALUE CALL BY REFERENCE
1 It is also known as pass by value It is also known as pass by reference.
2 Values are passed as inputs. Addresses are passed as inputs.
1 The actual arguments are variables, | The actual arguments are addresses of
constants or expressions. variables.
A
4 The formal arguments are also i bles.| The for guments are pointers.
.
X g\
5 Changes made in the function arel Changes made i called function are
not reflected back callin cted back in #W& calling function.

function.

called function
shares a coWation.
On shareS'common data.

e of function proto type:

6 The calling and t
maintains

ﬁopies of data’
7 A copy of con is MR

calling function

3 Example of function proto type:

void Swap(int a, int b); d Swap(int *p, int *q);

Example of function call: mple of function call:

Parameters vs Argu

The term parameter (some
the function definition, wl s \ tual input
supplied at function call.

Actual parameters vs Formal parameters:

S Actual parameters Formal parameters
NO
1 These are the variable found in the These are the variable found in the
function call. function definition or declaration.

———
CSE,NRCM P.REVATHY,ASSISTANT PROFESSOR Page 153

Programming for problem solving[CS1103ES]

2 They can be variables, constants or| They can only be variables
expressions or another function calls.

3 Example: Example:
funcl(12, 23); // constants Void funcl(int x, int y); //always variables
uncl(a, b); // variables

funcl(a + b, b + a); //expression

4 They are the original source of information | They get the values after function call occurs.

A
5 They are supplied by th & ller or] They nitialized with the values of actual
programmer. \ A argum

l

Note:

1. Order, number, and typ actua ents in the n caII t‘ atch with formal
arguments of the function (or fu |th rlabl rgu

2. If there is type mismatch between actual n the compiler will try to convert
the type of actual ar to formal argument Iega otherwise a alue will be
passed to the formalar

3. When actual arguments are less tha al ar ts, th age value is supplied to the

formalarguments.
4. Changes made in the formal argument do n

Passing arrays to functions (Arrays with fu

To process arrays in a large program, we need t hem to functions. We can pass arrays in two

ways:

1. passing individualelements

We can pass individual elements by either passing their data values or by passing their
addresses. We pass data values i.e; individual array elements just like we pass any data value
As long as the array element type matches the function parameter type, it can be passed. The called
function cannot tell whether the value it receives comes from an array, a variable or an expression.

Program using call by value

void funcl(int);
void main()

———
CSE,NRCM P.REVATHY,ASSISTANT PROFESSOR Page 154

Programming for problem solving[CS1103ES]

{

int a[5]={ 1,2,3,4,5};
funcl(a[3]);

}

void funcl(int x)

{
printf(“%d”,x+100);

}
Two-dimensional Arrays:

The individual elements of a 2-D array can be passed in the same way as the 1-D array. We can
pass 2-D array elements either by value or by address.

Ex: Program using call by value

void funl(int);

void main()
{
int a[2][2]={1,2,3,4}; \

funl(a[0][1]);
¥

void funl(int x)

{
printf(“%d”,x+10);

}

rst element of array(storing the base
ates, that we are passing address of first

As array name is a constant pointer poin
address),Passing array name to a function itse
element of array .

One-dimension

To pass i ameter. In the
calledfunction,we
number ofelemen

Program:

void funl(int X
void main()

{

int a[5]={ 1,2,3,4,5};
funl(a,5);

}

void funl(int x[],int n)
{

int i, sum=0;

———
CSE,NRCM P.REVATHY,ASSISTANT PROFESSOR Page 155

Programming for problem solving[CS1103ES]

for(i=0;i<n;i++)
sum=sum+x[i];
printf(“\nSum of the elements in an array is : %d ”,sum);

}
Two-dimensionalarray:

When we pass a 2-D array to a function, we use the array name as the actual parameter.
The formal parameter in the called function header, however must indicate that the array has
twodimensions.

Rules:

1. The function must be called by passing only the arrayname.
2. In the function definition, the f@ parameter is array with the size of the second

dimensionspecified.

Program:
void funl(int a[][2]);
void main()

{

int a[2][2]={1,2,3,4};
funi(a);

}

void funl(int x[][2
{ .

int L;
for(i=0;i<2;i++)
{
for(j=0;j<2;j++)
printf(“%3d”,x[i][j]);
printf(“\n”);
}

}

Recursion :

g languages,
is called a

0 i i ena runction to call itself. But while
using recursion, programmers need to be careful to define an exit condition from the
function, otherwise it will go into an infiniteloop.

[Recursive functions are very useful to solve many mathematical problems, such as
calculating the factorial of a number, generating Fibonacci series,etc.

CSE,NRCM P.REVATHY,ASSISTANT PROFESSOR Page 156

Programming for problem solving[CS1103ES]

How does recursion work?

void recurse() :_

{ recursive
coe eoe oo call
recurse();

¥
int main()
{
recurse();
. STt WYeY Wreie

To prevent infinite recur .) can where one branch
makes the recursive call an

When a function ca

on the stack, and th
recursivecalldoesnotmakeanewcopy
each recursive call returns, the
fromthestack,andexecutionresumesimme

rameters are all storage

variables. A
goperatedupon are new. As
d parameters are removed
ecallinsidethefunction.

The main advantage of recursive functions i
versions of several programs.

n use them to create clearer and simpler

Examplel: Factorial of a Number Using Recursion

The factorial of a
factorial of n (n)zlX2*3*4.......

The factorial of
#include <stdio.h
long int multiply
int main()

{

intn;
printf("Enter a positive integer: ");

scanf(*'%d", &n);

printf("Factorial of %d = %Ild", n, multiplyNumbers(n)); return 0;

long int multiplyNumbers(int n)

if (n>=1)
return n*multiplyNumbers(n-1);
else

CSE,NRCM P.REVATHY,ASSISTANT PROFESSOR Page 157

https://www.programiz.com/c-programming/c-if-else-statement

Programming for problem solving[CS1103ES]

return 1;

Output
Enter a positive integer: 6
Factorial of 6 = 720

Example 2:C program to generate Fibonacci series using recursive functions.

#include<stdio.h>
void fibo_rec(int n, int f1, int f2); void
main()

{
int f1=0,f2=1,n;
printf("Enter any number to print the acci series: ");

b

scanf("%d",&n);

if(n<=0)

printf("Enter a valid numbe
else if(n==1)

printf("fibonacci series is: %d",TT);
else if(n==2) m

4
" 4
&

o
o
NRCM

CSE,NRCM P.REVATHY,ASSISTANT PROFESSOR Page 158

Programming for problem solving[CS1103ES]

printf("fibonacci series is: %d %d",f1,f2);
else {

printf("fibonacci series is: %d %d ",f1,f2);
fibo_rec(n-2,f1,2);

printf("\n\n");

}

}

void fibo_rec(int n, int f1, int f2)

{

int f3;

if(n==0)

return;

f3=f1+f2;

printf("%3d ".3); 4
fibo_rec(n-1,f2,3);
}

Difference between Recursio d Non recugsion(Iteration)

4')
Both recursion an n are or exgeuting nstru@pe&tedly until some

condition is true. A same problem can be Wi cur well asiteration but still there are

several differences in*king and per an | haVe mentioned bek&
Recursl i

definition Recursion refers to tion
statements are executed again

a function calls itself a
again using loops until some

until some base
condition is reached ondition is true

Its execution is faster because it doesn’t
use stack.

Performance | It is comparatively slower b
before each function call the
state of function is stored in

previous function state Is again
astored fro G

memory

Code Size

recursion.

Limitations of recursion:
[Slower than its iterativesolution.
0 For each step we make a recursive call to a function....

———
CSE,NRCM P.REVATHY,ASSISTANT PROFESSOR Page 159

Programming for problem solving[CS1103ES]

0 May cause stack-overflow if the recursion goes too deep to solve theproblem.

0 Difficult to debug and trace the values with each step of recursion.
Storage classes in C :

Variables in C differ in behavior. The behavior depends on the storage class a variable may assume.
From C compilers point of view, a variable name identifies some physical location within the
computer where the string of bits representing the variables value is stored. There are four storage
classes in C.Storage classes specify the scope of objects .We define the storage class of an object
using one of four specifiers.

(1) Automatic storage class
(2) Register storage class
(3) Static storage class

(4) External storage class

(1) Automatic Storage Class:-

~

The features of a variable class nder:

Keyword

Storage
Default initial value

Scope

Life

Following program shows how an automatic stor ss variable is declared, and the fact that if the

variable is not Initialized it contains a garbage val

void main()
{

autoint i, j ;
printf ("\n%d %d"
}

When you run thi
So always make it

npredictable.

otherwise you are likely to get unexpected results. Scope and life of an automatic variable is
illustrated in the following program.

void main()
t
autointi=1;
CSE,NRCM P.REVATHY,ASSISTANT PROFESSOR Page

160

Programming for problem solving[CS1103ES]

{

autointi=2;

{
autointi=3;
printf ("\n%d ", i) ;

}

printf ("%d ", i) ;
}

printf ("%d", i) ;
}

/*Show the use auto variables*/
#include<stdio.h> %
int i,x;
for(i=1;i<=3;i++)

void main()
{
n

{
x=1;
X++;
printf(“Value of x in iteration %d is: \

}
}
Output :

Value of x in iteration 1 is:2
Value of x in iteration 2 is:2
Value of x in iteration 3 is:2

&

g
i

(2) Static Storage Class:-

The features of a variable defined to have a stati age class are as under:

Keyword

Storage

Default initial val

Scope b el ed
Life \Value of the variable persists between differentfunction calls.
CSE,NRCM P.REVATHY,ASSISTANT PROFESSOR Page

161

Programming for problem solving[CS1103ES]

the following program demonstrates the details of static storage class:

/*Show the use static variables*/
#include<stdio.h>
void main()

{

inti;
static int x;
for(i=1;i<=3;i++)
{

x=1;

X++;

printf(““Value of x in iteration %d igg\n”,i,x
}

}

Output :

Value of x in iteration 1 is:2
Value of x in iteration 2 is:3
Value of x in iteration 3 is:4
age ¢

(3) Extern Storage Class:-
The features of a variable who

Keyword Extern

Storage Memory

Default initial valuelZero

Scope Global

Life As laageas the prag ion does NQl«eek

al, not local.
care to

External variables differ
External variables are de
use them. Here is an exa
Ex:
#include<stdio.h>
extern int i;
void main()
{
printf(“i=%d”,1);
}

e ———
CSE,NRCM P.REVATHY,ASSISTANT PROFESSOR Page 162

Programming for problem solving[CS1103ES]

4)Register Storage Class:-

The features of a variable defined to be of register storage class are as under:

Keyword Register

Storage CPU Registers

Default initial valuejAn unpredictable value, which is often called a garbage value.

Scope Local to the block in which the variable is defined.

Life Till the control remains within the block in which the variableis defined.

A value stored in a CPU register can always be essed ster t 141e one that is stored in memory.
Therefore, if a variable is used at magagplaces i prognq it is bmfer to ?e its storage class as register.

A good example of frequently used es is loop count S.

We can name their storage class as re
void main() Vo Al |
{) \' " .5 ‘..‘ =
register int i ; b o

for(i=1;i<=10;i++)
printf ("\n%d", i) ; ‘
}

Scope rules in C.
Scope: Scope defines the visibility of object.it d
is the part of program in which it can be used
Scope rules

The rules are as under:

object can be referenced.Scope of a variable

of a variable to persist between different functio

1. Use static storage class only if you want the

calls.

in a program. Reaso
busy doing somethin
egister storage class

2. Use register sto
is, there are very
else. Make caref
loop counters, w

3. Use extern stora | the functions in th
program. This wWioeHe . gWents when making
function call. Declaring all the varlables as extern would amount to a Iot of wastage of memory spag
because these variables would remain active throughout the life of the program.

4. If we don’t have any of the express needs mentioned above, then use the auto storage class. In fact mos

of the times we end up using the auto variables, because often it so happens that once we have used th
variables in a function we don’t mind losing them.

>

wn QO

D © @D

—

D

D

CSE,NRCM P.REVATHY,ASSISTANT PROFESSOR Page 163

Programming for problem solving[CS1103ES]

UNIT-V

Algorithms for finding roots of a quadratic equations, finding minimum and
maximum numbersof a givenset, finding if a number is prime number, etc.
Basic searching in an array of elements (linear and binary search
techniques), Basic algorithms to sort array of elements (Bubble,

Insertion and Selection sort algorithms),Basic concept of order of
complexity through the example programs

2 |
Algorithm is a step-by-step procedure, which d es a tof in eJn:tlons to be executed in a certain order

to get the desired output. Algorith e generally crea dent nderlying languages, i.e. an
algorithm can be implemented in mo one programmi g Ianguage
ous. Eac

f

\v

Characteristics of an Algorithm:

Not all procedures can be\cheQan alg

J O
An algorithm should have tmﬁwm cterighi
e Unambiguous — rithm should b h of its,steps (or phases), and
th r and musislead tde meaning.

e Output — An algorithm should have 1 ed outputs, and should match the
desired output.

e Finiteness — Algorithms must terminate aft ite number of steps.

o Feasibility — Should be feasible with the av resources.

e Independent = be independent

Solving a quadratic equal
The formula to fi

The discriminant e quadr
k = (b2 - 4ac).

Depending upon the nature of the discriminant, the roots can be found in different ways.

1. If the discriminant is positive, then there are two distinct real roots.
2. If the discriminant is zero, then the two roots are equal.
3. If the discriminant is negative, then there are two distinct complex roots.

CSE,NRCM P.REVATHY,ASSISTANT PROFESSOR Page 164

Programming for problem solving[CS1103ES]

Algorithm to find all the roots of a quadratic equation:

1. Input the value of a, b, c.
2. Calculate k = b*b - 4*a*c

3.1f(d<0)
Display "Roots are Imaginary, calculaterl = (-b +i*sqrt(k))/ 2a and r2 =(b + i*sqrt(k))/ 2a.
else if (d =0)
Display "Roots are Equal and ¢ aterl=r2= 2*Qa)
else
Display "Roots are rea I alculate rl sqrt(k) / 2*‘ r2 =-b - sqrt(k) /2*a

4. Print rl and r2. oty
5. End the algorithm
Prime number is a number Which IS tly di by. an only.
Algorithm:

Step 1: start '
Step 2: read m and n Step"3: initia

Step 4: if i <=n goto step 5
If not goto step 10 Step 5: initialize j =
Step 6: if j <= i do as the follow.

If not goto step 7

i) if i%j == 0 increment ¢

i) increment j

iii) goto Step 6 Step 7 |f c=
Step 8: increme
Step 10: stop

i=m

=2 print i

Write a C Program to ge
Ans:
Program:
#include<stdio.
{
int m,n, i, j, count,
printf("Enter m and n values\n"); scanf(%d%d ,&m, &n);
printf("The prime numbers between %d to %d\n",m,n); for(i = m; i <= n; i++)
{
count = 0;
for(j=1; j <=i; j++) if(i % j == 0)

{

count++;

integers.

CSE,NRCM P.REVATHY,ASSISTANT PROFESSOR Page 165

Programming for problem solving[CS1103ES]

}

if(count == 2)

{

printf("%d\t", i);

}

}

}

Input & Output:

Prime no. series Enter m and n Values
2 10

The prime numbers between2t0 102357

Algorithm and program to find the minimum maximum numb a given set:
Problem Description: Given an array A[] of n, you need t the maximum and minimumelement

present in the array. Your algorithmgQould m he um
For Example:

Input: A[] ={ 4, 2, 0, 8, 20, 9, 2} ‘
the first element !‘1 traverse the array,
imum ever ssary.

ber of

parisons.

Output: Maximum: 20, M 0

Searching linearly: Increment the loop*y 1
We initialize both miwnd maximum ele
comparing each element and*Update

Pseudo-Code:
int[] getMinMax(int A[], int n)

{
int max = A[0]
int min = A[0]
for(i=1ton-1)
{

if (A[i] >ma
max = A[i]
else if (A[i]
min = A[i]

}

// By convention, let ans[0] = maximum and ans[1] = minimum
int ans[2] = {max, min};

return ans

CSE,NRCM P.REVATHY,ASSISTANT PROFESSOR Page 166

Programming for problem solving[CS1103ES]

ky

Program:
#include <stdio.h>

#define MAX_SIZE 100 // Maximum array size
int main()
{

int arr[MAX_SIZE];

int i, max, min, size;

printf("Enter size of the array: "); / ut size of the

scanf("%d", &size);

NRCM

CSE,NRCM P.REVATHY,ASSISTANT PROFESSOR

Page 167

Programming for problem solving[CS1103ES]

printf("Enter elements in the array: "); /* Input array elements */
for(i=0; i<size; i++)

{

N,/
N

NRCM

CSE,NRCM P.REVATHY,ASSISTANT PROFESSOR Page 168

Programming for problem solving[CS1103ES]

scanf("%d", &arr[i]);
}

max = arr[0]; /* Assume first element as maximum and minimum */
min = arr[0];

/* Find maximum and minimum in all array elements.*/

fo (i=1; i<size; i++)

{

if(arr[i] > max) /* If current element.is greater than max'*

{

max = arr[i];
} N [4
if(arr[i] <min) /* If current e eme‘mall an rv .2
{ .

min = arr[i];
/* Print maximum and minimum elem

printf(**Maximum element = %d\n", max);
printf(*Minimum element = %d", min);

return O;

SEARCHING:

Searchin i r set of the
elements like a y, | i a sorted or
unsortedlist.For ple,co arestoredin
successive memory locations. We need to search an element from the array. In the searching
operation, assume a particular element n is to be searched. The element n is compared withall
the elements in a list starting from the first element of an array till the last element. In other
words, the process of searching is continued till the element is found or list is completely
exhausted. When the exact match is found then the search process is terminated. In case, no
such element exists in the array, the process of searching should beabandoned.

CSE,NRCM P.REVATHY,ASSISTANT PROFESSOR Page 169

Programming for problem solving[CS1103ES]

LINEAR SEARCH:

Linearsearchtechniqueisalsoknownassequentialsearchtechnique.Thelinearsearch is a
method of searching an element in a list in sequence. In this method, the array is searched for
the required element from the beginning of the list/array or from the last element to first
elementofarrayandcontinuesuntiltheitemisfoundortheentirelist/arrayhasbeensearched.

Algorithm:
Stepl: set-up a flag to indicate “element not
found” Step2: Take the first element in the list

Step3: If the element in the li equal to the desiredelement
» Set flag to “elemen #
» Displayt essag elis
» Goto ste
Step4: If it is not the flist,
> Take the next ele in th@
> Go
Stepb: If the flag ment nd”
Display the me n
Step6: End Igorithm
Advantages:

1. It is simple and conventional m

implies that the items are stored in

2. The elements in the list can be in an

sorted or unsorted linear data structure
Disadvantage:

1. This method is insufficient when large

.e. The linear search can be applied on

er of elements is present inlist.

Linear Searc

Consider-

e Weare given i y.
e Element 15 has to be searched in it using Linear Search Algorithm.

|92|8?|53 10 15 23'6?'

L) 1 2 3> e 5 G

Limnear Search Example

CSE,NRCM P.REVATHY,ASSISTANT PROFESSOR Page 170

Programming for problem solving[CS1103ES]

Now,

o Linear Search algorithm compares element 15 with all the elements of the array one by one.
o It continues searching until either the element 15 is found or all the elements are searched.
Linear Search Algorithm works in the following steps-

Step-01:

o It compares element 15 with the 1% element 92.
e Since 15 # 92, so required element is not found.
e So, it moves to the next element.

Step-02:

e It compares element 15 w

e Since 15 # 87, so required
e S0, it moves to the next element.

2" element
nt is not fo

« It compares element 15 with'the 3"
e Since 15 #53, so

welement is not fo
e So, it moves to the n ment

« It compares element 15 with the 4" ele
e Since 15 # 10, so required element is not 18
e So, it moves to the next element.

o It compares elodaen itlatlao Bt olonoc o
e Since 15 = 15, so required element is found.
o Now, it stops i
Write a C Program to i

#include <stdio.h
int linear_search
int main()

{

int array[100], search, c, n, position;
printf("Input number of elements in array\n");
scanf("%d", &n);
printf("Input %d numbers\n®, n);
for (c=0;c<n;ct+)

scanf("%d", &array][c]);

CSE,NRCM P.REVATHY,ASSISTANT PROFESSOR Page 171

Programming for problem solving[CS1103ES]

printf("Input a number to search\n");
scanf("%d", &search);

position = linear_search(array, n, search);
if (position == -1)
printf(%d isn't present in the array.\n", search);
else
printf("%d is present at location %d.\n", search, position+1);

return O;

}
int linear_search(int a[], int n, int find)‘).
P
.

{ 5
int c; - ~
6
for(c=0;c<n;c++) \ ,
{
if (a[c] == find)
return c;
}
return -1;
e
The time required to search an ele

best case, it's present at the beginning i case, element is present at the end. Its
time complexity is O(n).

BINARY SEARCH:

Binary search is quicke orted data
structure. The binary sea) search starts
by testing the da ay. determines
targetiswhetherinthefirst
thesecondhalfandifitising
find target in the list or
middleelements.

To implement binary searc
follows:

ss until we
rst, last and
method, the elements must be in Sorted earch Is performed as
e The key is compared with item in the middle position of anarray

o If the key matches with item, return it andstop

o Ifthekeyislessthanmidpositioneditem,thentheitemtobefoundmustbeinfirst half of

array, otherwise it must be in second half ofarray.
e Repeat the procedure for lower (or upper half) of array until the element isfound.

CSE,NRCM P.REVATHY,ASSISTANT PROFESSOR Page 172

Programming for problem solving[CS1103ES]

RecursiveAlgorithm: int binary_search(int a[], int beg, int end, int item)

{
Setbeg=0

Setend =n-1
while ((beg <= end) and (a[mid] # item))

{

Setend =mid -1

Else if(item >a[mi Q 0
Set beg = mi l |

Set mid = (beg + end) / 2
if (item < a[mid])

¥

else

NRCM

CSE,NRCM P.REVATHY,ASSISTANT PROFESSOR Page 173

Programming for problem solving[CS1103ES]

{

}
}
Set loc =-1

Set loc=mid;

}
Explanation

Binary Search Algorithm searches an element by comparing it with the middle most element of the
array.

Then, following three cases are possible-

4
Case-01 %
If the element being searche und to be the st elerWts index is returned.

Case-02
-’
If the element being se is foun greater tha iddle ement, then its search is
further continued in the ri arra mi ent.
Case-03 ‘ ’
If the element being searched is fo be s dle most element, then its search is

further continued in the left sub array

This iteration keeps on repeating on the
sub array reduces to zero.

Binary Search Example-

Consider-

o We are given the Tollowing sorte
e Element 15h i

Searc
I 3 I 10 15

a[0] a1l al21 al3]1

al[s]

ala4] als]

Eimna Searcih Example

Binary Search A hm Wm -ollo‘te

Step-01:

o To begin with, we take beg=0 and end=6.
e We compute location of the middle element as-
mid= (beg + end) / 2

=(0+6)/2

CSE,NRCM P.REVATHY,ASSISTANT PROFESSOR Page 174

Programming for problem solving[CS1103ES]

=3
e Here, a[mid] = a[3] =20 # 15 and beg < end.
e SO, we start next iteration.

Step-02:
o Since a[mid] = 20 > 15, so we take end = mid — 1 = 3 — 1 = 2 whereas beg remains unchanged.

o We compute location of the middle element as-
mid= (beg + end) / 2

=(0+2)/2
=1 "

o Here, amid] = a[1] = 10 # 15 and be(‘gend
¢ S0, we start next |terat|on

Step-03:
e Since a[mid] = 10 <15, so we tak = m| =1+M=2 whereas epj remains unchanged.
o We compute Iocatlon iddl ent as-

mid= (beg + en

= (2 +
=2
o Here, a[mid] = a[2] = 15 which ma
o S0, our search terminates in success a

The advantages of binary search algorithm are-

¢ Iteliminates h

e This informati
For large Iists

The dlsadvantages of bi

o Itemploys rec \
o Programming binary search algorithm is error prone and dlfflcult
o The interaction of binary search with memory hierarchy i.e. caching is poor.(because of its

random access nature)

Time Complexity Analysis-

Binary Search time complexity analysis is done below-

CSE,NRCM P.REVATHY,ASSISTANT PROFESSOR Page 175

Programming for problem solving[CS1103ES]

« Ineach iteration or in each recursive call, the search gets reduced to half of the array.
o So for n elements in the array, there are logzn iterations or recursive calls.
Thus, we have-

Time Complexity of Binary Search Algorithm is O(logzn).

Here, n is the number of elements in the sorted linear array.

This time complexity of binary search remains unchanged irrespective of the element position even if it
IS not present in the array.

N,/
e

NRCM

CSE,NRCM P.REVATHY,ASSISTANT PROFESSOR Page 176

Programming for problem solving[CS1103ES]

Cprogramforrecursive
binarysearchto find the given
element within array.

#include<stdio.h>
intbsearch(int [],int, int, int);

void main()

{

int a[20],pos,n,k,i,1b,ub;

clrser();

printf("\nEnter the

scanf("%d",&n);

printf("\nEnter elements

for(i=0;i<n;i++)

scanf("%d",&a[1]);

printf("\nEnter the

scanf("%d",&k);

Ib=0;

ub=n-1,;

pos=bsearch(a,k,Ib,ub);

if(pos!=-1)
printf("Search successful, element found a

else
printf(Search unsuccessful, element not fou
getch();

}

int bsearch(int a[], int

{
int mid;
while(ub>=lb)

{
mid=(lb+ub)/2;

if(k<a[mid])
ub=mid-1,

else if(k>a[mid])
Ib=mid+1;

else if(k==a[mid])
return(mid);

CSE,NRCM P.REVATHY,ASSISTANT PROFESSOR Page 177

Programming for problem solving[CS1103ES]

return(bsearch(a,k, Ib,ub));
k

return -1;

}QLJTPLJT:

Enter‘n’value : 6

Enter elements foranarray : 10 32 25 84 55 78
Enter the element tobesearched : 78

Search successful, Element foundat Position ; 5

[* recursive program for Linear Search*/
#include<stdio.h>
i<n; |++)

int linear(int [],int,int ,int); void main()
{

int a[20],pos=-1,n,k,i; clrscr();
printf("\nEnter n value:" nf("%

printf("\nEnter elements array:"); f
scanf("%d",&ali]);

printf("\n Enter the ttob

pos=linear(a,n,k); if&)

printf(*\n Search successful, Ele

else

printf("Search ur&ful, e
}

int linear(int a[],int n,int low, int k)
{
if(low>=n)
return -1;
else if(k==a[low]
return low;
else

return linear(a, +1,K);
return -
Out ut:-

Enter‘n’ value

Enter elements foranarray : 10 32 22 84 55 78
Enter the element tobesearched : 55
Search successful, Element foundat Position : 4
Sorting:
CSE,NRCM P.REVATHY,ASSISTANT PROFESSOR Page 178

Programming for problem solving[CS1103ES]

Sorting is the basic operation in computer science. Sorting is the process of arranging data in some given
sequence or order (in increasing or decreasing order).

For example you have an array which contain 10 elements as follow;
10,3,612,4,17,5,9

After sorting value must be;

3,45,6,9,10, 12, 17

Above value can be sorted by applying any sorting technique. C language have following technique to sort values;

4

e BubbleSort

e SelectionSort %
e InsertionSort
Bubble Sort in C:

Bubble sort is a simple sortin orithm in
and swapped if their position I ect. |
the lighter elements come up and er ele

g

ich each'element igs€@mpared with }djacent element
med as bub beca e as like bubbles
sett wn.

&

Both worst case and avera omplexity is O

(n?). Example Program for Bubble Sort

#include<stdio.h>

int main()

{

int a[50],n,i,j,temp;
printf("Enter the size of array: ");
scanf("%d",&n);
printf("Enter the array

for(i=0;i<n;++i)
scanf("%d",&a[i]);

for(i=1;i<n;++i)
for(j=0;j<(n-i);++j)
if(alj]>alj+1])

{

temp=al[j];

¥
¥

How Bubble Sort Works?

CSE,NRCM P.REVATHY,ASSISTANT PROFESSOR Page 179

Programming for problem solving[CS1103ES]

We take an unsorted array for our example. Bubble sort takes O(n?) time so we're keeping it short and
precise.

‘14”33”27“35”10'

Bubble sort starts with very first two elements, comparing them to check which one is greater.

(14 33 | 27 | 35 | 10 |

In this case, value 33 is greater than 14, so it is already in sorted locations. Next, we compare

33with 27. m ‘ﬂ

L‘im Jl 33 H 27 H 35 J‘ 10 “
We find that 27 is smaller than 3% andkthese tv\'tjes mu empped.
Q=]
The new arrayshou‘ike t;ﬂs— — .' \ | '
S . -
[14| 27”33“35‘ 10‘

Next we compare 33 and 35. We find thatVready sorted positions.

14z s [0]

Then we move t .

[[0
e

14 | 27 | 2 [38][10|

We know then t

We swap these values. We find that we have reached the end of the array. After one iteration, the
array should look like this —

HEEIEE)

To be precise, we are now showing how an array should look like after each iteration. After the

CSE,NRCM P.REVATHY,ASSISTANT PROFESSOR Page 180

Programming for problem solving[CS1103ES]

second iteration, it should look like this —

14][27| 10)[s0]) s8]

N,/
Ao

NRCM

CSE,NRCM P.REVATHY,ASSISTANT PROFESSOR

Page 181

Programming for problem solving[CS1103ES]

Notice that after each iteration, at least one value moves at the end.

a2

And when there's no swap requwed bubble sorts learns that an array is completely sorted.

10][1a][27 |[s][ss |

Algorithm:
void bubbleSort(int a[], int n)
{

fori=0ton-1

{
[* compare the adj leme

{
forj=0ton-1

if list[j] > list[j+1])

{
[* swap the
temp=list[j]
list[j]=list[j+1];
list[j+1]=temp;

C Program to implement Bubble Sort Algorithm,

NRCM

CSE,NRCM P.REVATHY,ASSISTANT PROFESSOR Page 182

Programming for problem solving[CS1103ES]

#include <stdio.h>
#define MAX 10
int listf MAX] = {1,8,4,6,0,3,5,2,7,9};
void display()
{
int i; printf("[");
/I navigate through all itemsfor (i
=0; i< MAX; i++)
{

}
printf("]\n");

printf("%d " list[i]);

¥

void bubbleSort()

{

int temp;

int i,j;

/l'loop through all numbersfor(i = 0; I

MAX-1; i++)

{

/ loop through numbers faahead

for(j = 0; j < MAX-1-i; j++)

{

/1 check if next number is Ie‘ current no
/I swap the numbers.

/I (Bubble up the highest number)
if(list[j] > list[j+1])

{
temp = list[j];
list[j] = list[j+1];
list[j+1] = temp;

}

}

¥

}

void main()

{

printf("Input Array:);d
printf("\n");

bubbleSort(); printf("\n

");display();
}

CSE,NRCM P.REVATHY,ASSISTANT PROFESSOR

Page 183

Programming for problem solving[CS1103ES]

SelectionSortAlgorithm:

Selection sort is a simple sorting algorithm. This sorting algorithm is an in-place comparison-

based algorithm in which the list is divided into two parts, the sorted part at the left end and the unsorted
part at the right end. Initially, the sorted part is empty and the unsorted part is the entirelist.

The smallest element is selected from the unsorted array and swapped with the leftmost element, and
that element becomes a part of the sorted array. This process continues moving unsorted array boundary by
one element to the right.

This algorithm is not suitable for large data sets as its average and worst case complexities are of O(n?),
where n is the number of items.

How Selection Sort Works?

Consider the following depicted array as an e%le. A,j}
- ‘ e

\MH%HZ?HwI

le Ilst canne quentlally J'ye first positionwhere 14 i
hat 10 is the vaIue

as H 19]| a2]] a4]

For the first position in the s ted Ilst the
stored presently, we search the st and

’14”33

So we replace 14 with 10. A iter 10, w pens t
appears in the first position of the sorted list®

‘10HssH27H14H35H19H42H44‘

m value in thelist,

For the second position, where 33 is residing, we'ning the rest of the list in a linearmanner.

[10](=s)27 (12][s][12][22][=2]

We find that 14 is the s
values.

lace. Weswap these

1 P o~ g, (e
\10”33”27\\14“35“19”42“44\

After two iterations, two

(10)(xa)(27 J(=3 (=8 J[1o][42 [24]

The same process is applied to the rest of the items in the array.

(28

CSE,NRCM P.REVATHY,ASSISTANT PROFESSOR Page 184

Programming for problem solving[CS1103ES]

Following is a pictorial depiction of the entire sorting process —

(e (32)(=7 J(== J(== J(12 J(2=][==]
(Ge](3a])(=7 J[(== (== J(ia][4=][=]
(1o][+ J[(38 |[== J[== |[27 |[= |[== |
(1o {22)12][== J[=5 J[27 J[= [==]
EeEs)) (=) oo)(==)(4= [==]
[() N (==)(= [+= (=]
(1o (=)(2= J((27 J[=5 J(== J[= J[== |
(1o (22][22 J[=z7 J((=s][== |[=][==]
REEEA e ey

Selection sort algorithm:
void selection sort(int list[], int n)// list : array of ite

{

fori=1lton-1

{

: size of list

/* set current element as minimum?*/min = i
/* check ment t or j
ton

{

}

/* swap the minimum element with the current element*/temp=
listfmin]
listfmin]=list[i]
list[i]=temp;
}
}

CSE,NRCM P.REVATHY,ASSISTANT PROFESSOR Page 185

Programming for problem solving[CS1103ES]

W,
SN

NRCM

CSE,NRCM P.REVATHY,ASSISTANT PROFESSOR Page 186

Programming for problem solving[CS1103ES]

C program to implement selection sort Algorithm:

#include <stdio.h>
#define MAX 7
int Array[MAX] = {4,6,3,2,1,9,7};
void display()
{

int i; printf("[");

/I navigate through all itemsfor(i = O;i
< MAX;i++)

{

}
printf("]\n");
}
void selectionSort()
{
int indexMin,i,j,temp;
Il 'loop through all numbers
for(i = 0; i < MAX-1; i++)

{
/I set current element as min‘iexMin =i
/I check the element to be minimu

for(j = i+1;) < MAX;j++)

printf("%d ", intArray[i]);

if(intArray[j] < intArray[indexMin])

indexMin = j;
}
}

I/ swap the numbers
temp = intArray[indexMin];
intArray[indexMin] = in
intArray[i] = temp;
}

}

void main()

{
printf("Input Array?
display();
selectionSort();
printf("Output Array: ");
display();

}

[———
CSE,NRCM P.REVATHY,ASSISTANT PROFESSOR Page 187

Programming for problem solving[CS1103ES]

Insertion Sort:

This is an in-place comparison-based sorting algorithm. Here, a sub-list is maintained which is always
sorted. For example, the lower part of an array is maintained to be sorted. An element whichis to be
'insert'ed in this sorted sub-list, has to find its appropriate place and then it has to be inserted there. Hence
the name, insertion sort.

The array is searched sequentially and unsorted items are moved and inserted into the sorted sub-list (in the
same array). This algorithm is not suitable for large data sets as its average and worst case complexity are
of O(n?), where n is the number of items.

How Insertion Sort Works?
We take an unsorted array for our example. h. '1

)=z e Lo e)| 22) |

b
Insertion sort compares the first two e ts. \":; A '

A

(14 38 27 10 [3 [10] 42 || 4]
It finds that both 14 and 33 ady in ascenMg or.)r MM is in sort list.

14

pEnpoan

Insertion sort moves ahead and compares 33 Witrv

08 RN 2 N N K
And ﬁndS that 33 iS not I%

L)zl 2 o o8 e o2)+

hat the sortedsub-
ains sorted after

It swaps 33 with 27. It a
list has only one eleme
swapping.

0 L A [S B

By now we have 14 and 27 in the sorted sub-list. Next, it compares 33 with 10.

L)z e o 1o 42)| |

CSE,NRCM P.REVATHY,ASSISTANT PROFESSOR Page 188

Programming for problem solving[CS1103ES]

These values are not in a sorted order.

0 D S LY D [

So we swap them.

D S R R D

However, swapping makes 27 anﬁo unsorted. A

1427 (10 [30 [38][10 | 2] aa
Hence, we swap them to‘ m '
- .

] SRR

Again we find 14 and 101 an m‘j on‘ ' g

[1a](re (=)2)(ss) w0 [42][22]

We swap them again. By the eM MOM a sorted sub-list of 4 items.

{10”14”27”33“35"19”42”44‘

This process goes on until all the unsorte s are covered in a sorted sub-list

Algorithm:
void insertionSori

{
int i, key, J;
for(i=1;i<n;i

{
keyarr[i];j=1i- 1;

/* Move elements of arr[0..i-1
their current position */

while (j >= 0 && arr[j] > key)
{

arr[j+ 1] =arr[jl;j=j- 1,

at are greater , L0 one position aheado

}
arr[j + 1] = key;

CSE,NRCM P.REVATHY,ASSISTANT PROFESSOR Page 189

Programming for problem solving[CS1103ES]

¥
k

C Program to implement Insertion Sort Algorithm:
/I C program for insertion sort

#include <math.h>
#include <stdio.h>
/* Function to sort an array using insertion sort*/

void insertionSort(int arr[], int n)
{
int i, key, J;
for(i=1;i<n; i++)
are greaterO

{key =arr[i];j=1-

/* Move elements of arr[0..i-1
their current position */

while (j >= 0 && arr[j] w
{

arr[j + 1] = arr[j];j —j 1;

arr[j + 1] = key;

k
¥

/I A utility function to print an array of
void printArray(int arr[], int n)

ey, to one ‘n aheadof

o

&

int i;

for (i=0;i<n;i+t)
printf(*%d ", arr[i]);
printf("\n");
}

main()

{

intarr[] ={ 12,1
int n = sizeof(arr)
sizeof(arr[0]);
printf(“\nBefore
printArray(arr, n),

insertionSort(arr,n);
printf(“\nAfterSorting\
n” ;

printArray(arr, n);

CSE,NRCM P.REVATHY,ASSISTANT PROFESSOR Page 190

Programming for problem solving[CS1103ES]

return O;

}
Complexity:

Complexity has no formal definition at all. It just defines the rate of efficiency at which a
task is executed. In data structures and algorithms, there are two types of complexities
that determine the efficiency of an algorithm. They are:

Space Complexity: Space complexity is the total memory consumed by the program for
its execution.

Time Complexity: It is defined as the times in number instruction, in particular, is
expected to execute rather than the total time is taken. Since time is a dependent
phenomenon, time complexity may vary on some external factors like processor speed,
the compiler used, etc.

In computer science, the time complexity of an algorithm is expressed in big O notation.
Let's discuss some time complexities.

O(1): This denotes the constant time. 0(1) usually means that an algorithm will have
constant time regardless of the input size. Hash Maps are perfect examples of constant
time.

O(log n): This denotes logarithmic time. O(log n) means to decrease with each instance
for the operations. Binary search trees are the best examples of logarithmic time.

O(n): This denotes linear time. O(n) means that the performance is directly proportional
to the input size. In simple terms, the number of inputs and the time taken to execute
those inputs will be proportional or the same. Linear search in arrays is the best
example of linear time complexity.

O(n2): This denotes quadratic time. O(n2) means that the performance is directly
proportional to the square of the input taken. In simple, the time taken for execution will
take square times the input size. Nested loops are perfect examples of quadratic time
complexity.

Let's move on to the main plan and discuss the time complexities of different sorting
algorithms.

Time Complexity of Bubble Sort

CSE,NRCM P.REVATHY,ASSISTANT PROFESSOR Page 191

Programming for problem solving[CS1103ES]

Bubble sort is a simple sorting algorithm where the elements are sorted by comparing
each pair of elements and switching them if an element doesn't follow the desired order
of sorting. This process keeps repeating until the required order of an element is
reached.

Average case time complexity: O(n2)
Worst-case time complexity: O(n2)
Best case time complexity: O(n)

The best case is when the given list of elements is already found sorted. This is why
bubble sort is not considered good enough when the input size is quite large.

Time Complexity of Selection Sort

Selection sort works on the fundamental of in-place comparison. In this algorithm, we
mainly pick up an element and move on to its correct position. This process is carried
out as long as all of them are sorted in the desired order.

Average case time complexity: O(n2)
Worst-case time complexity: O(n2)
Best case time complexity: O(n2)

Selection sort also suffers the same disadvantage as we saw in the bubble sort. It is
inefficient to sort large data sets. It is usually preferred because of its simplicity and
performance-enhancing in situations where auxiliary memory is limited.

Time Complexity of Insertion Sort

Insertion sort works on the phenomenon by taking inputs and placing them in the
correct order or location. Thus, it is based on iterating over the existing elements while
taking input and placing them where they are ought to be.

Best case time complexity: O(n)

Average and worst-case time complexity: O(n2)

CSE,NRCM P.REVATHY,ASSISTANT PROFESSOR Page 192

	UNIT-I
	Introduction to Computers:
	Input device:
	Ex: keyboard, Mouse, Scanner.
	Output device :
	Ex: Monitor, Printer, Speaker are output devices .
	Primary Memory
	Secondary Storage and Disk
	Processor:
	Computer Languages:
	Machine Languages
	Symbolic Languages:
	High Level Languages:
	Creating and Running Programs:
	Writing and Editing Programs
	Compiling Programs:
	Linking Programs:
	Executing Programs:
	Interpreter Vs Compiler
	Types of Error
	2. Run-time Errors :
	3.Logical Errors :
	Number System:
	The value of each digit in a number can be determined using −
	Other Number System:
	Representation of Algorithm ,Flowchart /Pseudocodewith Examples:
	Algorithm:
	Characteristics or properties of Algorithm:
	1.Input :Zero or more quantities are externallysupplied.
	Advantages of Algorithms:
	Disadvantages of Algorithms:
	Example2: Average of 3 numbers.
	Example3: Average of n inputtednumbers.

	Flowchart:
	Purpose of a Flowchart :
	Advantages of a Flowchart :
	Limitations of a Flowchart :
	Prepare an algorithm and flow chart for swapping two numbers
	Algorithm :
	Flowchart :
	Flowchart:

	Pseudocode:
	Example of Pseudocode:
	Example Sum of numbers from 1 to 5:

	Creating compiling and executing a program:
	Creating and running programs:

	Syntax And Logical Errors In Compilation:
	Object Code :
	Executable Code :

	Data types :
	1. Primary or (fundamental) datatype
	i)Integer types:
	Character type:-
	ii) Floating point types:
	iv). Double precision type:
	2. User defined datatypes:

	Operators :
	NOTE:
	Integer Arithmetic:
	Real Arithmetic:
	Mixed mode Arithmetic:
	2. RelationalOperators:
	3.LogicalOperator:
	Assignmentoperator:
	3. Increment and Decrementoperators:
	4. Conditionaloperator:
	5. BitwiseOperators:
	6. Specialoperators:

	Expressions:
	variable = expression;

	Precedence and Associativity of operators:
	Operator precedence:
	Note:
	Hierarchy of operators in C :

	Conditional Branching and Loops:
	Writing and Evaluation of conditional statements (examples).
	Example :
	Truth table for AND (&&)

	Conditional Branching:
	There are 4 if statements available in C:
	Example Program for if statement:

	2. if—elsestatement:
	Program for if else statement:

	Nested if (else) Statements:
	• The statement executed as a result of an if statement or else clause could be another if statement
	• These are called nested if statements
	• An else clause is matched to the last unmatched if (no matter what the indentation implies)
	• Braces can be used to specify the if statement to which an else clause belongs
	Flow chart:
	Example program:
	void main ()
	int a, b;
	scanf(“%d%d”, &a, &b);
	if(a>b)
	{
	if(a>c)
	printf("%d\n", a);
	else
	printf("%d\n", b);
	}
	else (1)
	{ (1)
	if(c>b)
	printf("%d\n“ , c);
	else (2)
	printf("%d\n“ , b); }
	} (1)
	Else-if ladder:
	 Else if ladder is one of the conditional control-flow statements.
	 It is used to make a decision among multiple choices.
	Flow chart: (1)
	Example Program:
	void main()
	{ (2)
	int m1,m2,m3,avg,tot;
	printf("enter three subject marks");
	scanf("%d%d%d", &m1,&m2,&m3);
	tot=m1+m2+m3;
	avg=tot/3;
	if(avg>=75) {
	printf("distinction"); }
	else if(avg>=60 && avg<75) {
	printf("first class"); }
	else if(avg>=50 && avg<60) {
	printf("second class"); }
	else if (avg<50) {
	printf("fail");
	} (2)
	} (3)
	Switch Statement:
	Syntax:
	break;
	break; (1)
	break; (2)
	Example Program:
	Use of switch statement:
	1. while Loop
	Syntax: (1)
	Program to print n natural numbers using using while

	Do-while Loop:
	Syntax:
	Program to print n natural numbers using using do while

	3. for loop:
	Syntax:
	Program to print n natural numbers using for loop
	Syntax: (1)
	Example Program :
	Output:
	Jumping control-flow statements:
	break statement:
	Program for break statement:
	continue statement:

	Type conversion:
	Managing Input and Output:
	Managing input and output operations:
	Input – Output functions:
	1. UnformattedI/Ostatements 2.Formatted I/O statements
	program:
	Output:
	program: (1)
	Output: (1)
	Output :-

	Character test functions:
	ctype.h
	program:

	Formatted I/O Functions:
	Inputting Integer Numbers:
	Inputting Real Numbers:
	Inputting character strings:
	Formatted Output:

	UNIT-II
	Arrays
	Examples where the concept of an array can be used are :
	DECLARATION OF ONE-DIMENSIONALARRAYS:
	Syntax:type variable-name[size];
	For e.g.-
	Note :
	INITIALIZATION OF ONE-DIMENSIONAL ARRAYS:
	COMPILE TIME INITIALIZATION :
	Syntax:
	RUN TIME INITIALIZATION
	EXAMPLE PROGRAMS:
	program :void main()
	Syntax:type array-name[row_size][column_size];
	INITIALIZING 2D ARRAYS:
	Example program:

	Example Programs:
	1. Develop a program to Find the Largest Two Numbers in a given Array andalso
	2.Implement a program to insert an elements of an Array in the requiredposition
	3. Develop a program to reverse anarray
	5. Program to multiply twomatrices
	6. Program to display the transpose of amatrix
	Reading a Line ofText:
	Using getchar and getsfunction:
	Example program:
	Features of %s specifications:
	Example program: (1)
	Output:
	Using putchar and putsfunctions:
	syntax:
	Example:
	syntax: (1)
	strcat(str1,str2) will result in:
	Example:strcpy(city, “DELHI”);
	Example :

	Strings with out string handling function:
	// string copy with out string handling function
	Example Programs: (1)

	UNIT-III
	Why Use Functions? (Need for Functions)
	The following reasons make functions extremely useful and practically essential:
	Designing structured programs:
	Definition:
	Main Function in C:

	Types of Functions:
	 Standard libraryfunctions
	User Defined Functions in C:
	A. FunctionDeclaration
	2. FunctionDefinition
	Function Header
	Function Body
	3. FunctionCall
	Different Sub parts of Above Syntax :
	function-name
	parameters
	Example: Calling function main()
	Parameter Passing Techniques in C:
	Call by value:
	Call by Value vs Call by Reference:
	Actual parameters vs Formal parameters:

	Passing Individual Elements:
	Program using call by value

	Two-dimensional Arrays:
	2. Passing whole array (idea of call byreference)
	One-dimensional array(passing array name as base address to a function)
	Program:

	Two-dimensionalarray:
	Example1: Factorial of a Number Using Recursion
	Example 2:C program to generate Fibonacci series using recursive functions.
	Difference between Recursion and Non recursion(Iteration)
	Limitations of recursion:

	Solving a quadratic equation:
	x = [-b +/- sqrt(-b^2 - 4ac)]/2a
	Algorithm to find all the roots of a quadratic equation:
	Algorithm and program to find the minimum and maximum number in a given set:
	For Example:
	Searching linearly: Increment the loop by 1
	Pseudo-Code:
	Program:
	Algorithm:
	Advantages:
	Disadvantage:
	Timecomplexity:O(n)

	Linear Search Example:
	Step-01:
	Step-03:
	Step-04:
	Step-05:
	Write a C Program to implement Linear Search Algorithm?
	BINARY SEARCH:

	{
	{ (1)
	}
	{ (2)
	Explanation
	Case-01
	Case-02
	Case-03
	Binary Search Example-
	Step-02:
	Step-03: (1)
	Binary Search Algorithm Advantages-
	Time Complexity Analysis-
	Sorting:

	How Bubble Sort Works?
	How Selection Sort Works?
	C program to implement selection sort Algorithm:
	How Insertion Sort Works?

	Algorithm:
	Complexity:
	Time Complexity of Bubble Sort
	Time Complexity of Selection Sort
	Time Complexity of Insertion Sort

